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The Petrov classification for the curvature tensor of an Einstein space M*is related to the critical-point
theory of the sectional-curvature function o, regarded as a function on the manifold of nondegenerate
tangent 2-planes at each point of the space. It is shown that the Petrov type is determined by the number
of critical points. Furthermore, all the invariants in the canonical form can be computed from a knowl-
edge of the critical value and the Hessian quadratic form of o at any single critical point.

I. INTRODUCTION

The Petrov classification® of spaces supporting
gravitational fields is a local classification of the
curvature tensor at each point m of the space-time
manifold. It proceeds by an algebraic reduction of the
matrix of components of the curvature tensor at m
to a canonical form. The purpose of this paper is to
exhibit some of the geometric content of Petrov’s
classification and in particular to obtain a geometric
interpretation of the invariants in the canonical forms.

The geometric concept which we shall use is that
of the sectional curvature o regarded as a function on
the manifold of nondegenerate tangent 2-planes at m.
We shall show that the Petrov classification reflects the
critical-point behavior of the function ¢. More
precisely, the Petrov type is determined by the number
of critical points of o. Furthermore, half of the in-
variants which appear in the canonical forms are
critical values of ¢, and all the invariants can be com-
puted from a knowledge of the critical value and the
Hessian quadratic form of ¢ at any single critical point.

We include, in Sec. II1, a derivation of the canonical
forms. This derivation is essentially a variation on
Petrov’s,? but its use of the Hodge star operator to
make the space of bivectors at m into a complex
vector space considerably simplifies the computations.
We also include as a postscript a proof that the sec-
tional curvature cannet in general be extended to be
a continuous function on the manifold of all tangent
2-planes at m.

II. GEOMETRIC PRELIMINARIES

Let M* be a 4-dimensional Lorentz manifold and
let ¥ denote the tangent space to M* at some point
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me M* Thus V is a 4-dimensional vector space
provided with an inner product (,) of signature
(+++—). Let A% denote the (6-dimensional) space
of 2-vectors® of V. The space A? is equipped with its
standard inner product whose value on decomposable
elements is given by

<U1 A Uy, Wy A w2> = det [<Uia wi>]’ Vir Wy EV.

Note that, if {e,, e,, 3, €,} is a Lorentz orthonormal
basis for V, then

ferhes,eshey, e heg,e3hey,eqhey e heyd (1)

is an orthonormal basis for A2. In particular, the inner
product on A? has signature (+++———). We
shall refer to a basis of type (1) as a Loreniz basis
for A2,

Let G, denote the submanifolds of A2 consisting of
all decomposable 2-vectors of length +1. Then G,
(respectively, G_) can be identified with the set of all
spacelike (respectively, timelike) oriented 2-dimen-
sional linear subspaces of ¥ by v A w <> P where P
is the oriented subspace of V" generated by {v, w}. If,
under this identification, we set P, = ¢; A ey, Py =
e, Aeg, and P; = e, A 3, then the Lorentz basis (1)
for A?is of the form

{P15P25P3aP1J~’P;—’P;_}’ (11)

where, for Pe G, U G_, PL is the oriented orthog-
onal complement of P in V. Here we are assuming
that V is given a definite orientation and that the
basis {e;, -, ey for ¥V is compatible with that
orientation. Note that G, U G_ consists of all
nondegenerate 2-dimensional oriented subspaces of
V'; that is, those 2-dimensional oriented subspaces P
of ¥ such that the restriction to P of the inner product
of V is a nonsingular inner product on P.

Given an orientation on V, there is defined on A2
another element of structure, the star operator # .  is
the self-adjoint linear operator on A? defined by the

3 For definitions and basic properties, see, €.g., A. 1. Mal'cev,

Foundations of Linear Algebra (W. H. Freeman and Co., San Fran-
cisco, 1963), Chap. 8.
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formula & A 5 = (&, *n)w (§, n€A?), where o is
the generator for the 1-dimensional space A* of 4-
vectors of V givenby w =e; A--- Aey, {e), ", e
being any Lorentz-orthonormal basis for ¥ compatible
with the orientation of V. Geometrically, * is the
operator on A? such that, for Pe G, U G_, P =
—e(P)P+ = ¢(P+)P* where e is the function defined
on G, UG_ by «P)= (P,P)= £1. In particular,
note that *: G, — G and that s« = —identity. The
matrix for * relative to a Lorentz basis (1) for A% is

given by
-1 ]
M=1_; o

where I denotes the 3 x 3 identity matrix.

Using the operator *, the vector space A% may be
regarded as a complex 3-dimensional vector space as
follows: for & € A? and a + ib a complex number, we
set (@ + ib)é = a& + bxE. Moreover, the complex-
valued symmetric bilinear form g, defined on A? by

g(& m) = (& m) — &, *n), (€)

makes A2 into a complex Euclidean space. Given a
Lorentz basis (1’) for A2, the set {P;, P,, Py} is then
a basis for the complex space A% which is g ortho-
normal.

This complex Euclidean structure on A? enables us
to give a simple description of the submanifolds G .
The condition & A & = 0, or equivalently (&, *&) = 0,
is well known* to be a necessary and sufficient condi-
tion that & e A? be decomposable. It follows that
£ € A? is decomposable if and only if g(£, &) is real,
and £ & if and only if g(§, §) = £1.

One important consequence of this description of
G, is the following:

2

Lemma: Suppose {&;, &, &3} is a g-orthonormal set
in A% Then £,€G, for each j and, moreover, a
Lorentz basis (1') for A? is obtained by setting
P; = +¢; (j= 1,2, 3) where any two (and perhaps
all three) of the signs + may be taken to be +.

Proof: Let P,=§&; (j=1,2,3). By the above
remarks, P, € G, for each j. Since P;- = —«P,, the
Lorentz orthonormality in A2 of the set (1') so ob-
tained is immediate from the definition (3) of g. Now
we would like to construct a Lorentz orthonormal
basis {e;, -, e} for V such that P, = e Ae,,
P, =¢, Aeg, and Py = e, A e3. Since (P, #P,) = 0,
we have P, A P, = 0 and hence there exists a nonzero
vector e, in Py N P,, which we may take to be a unit
vector. Let ¢, and e; be unit vectors such that

4 See Ref. 3, p. 281, problem 3.

(ey, @) = {e,,e5) =0ande; Aey = P,,e; A eg=P,.
Then ({e,, e3) = (P, P;) = 0 also. Completing a
Lorentz orthonormal basis {e,, -, ¢, for V, we
have Py =3 a,e; A ¢, for real a,; with a,; = —ay,
and the orthogonality relations on the §; = P; imply
that in fact P; = £, A ¢3.

If P, = +e, Ae;, we are done. If Py = —e; A gy,
then clearly setting P, = — &, at the beginning would
have corrected the situation. However we could as
well have set P, = —§&, and followed the above
procedures thereby negating the vector e, obtained, or
we could have set P, = —§&, thereby negating the
vector e; obtained. In any case, an appropriate basis
for V is obtained and the proof is complete.

Remark: The action of the Lorentz group of J on
¥ induces an action of this group on A? as a group of
complex rotations; that is, the natural induced action
of the Lorentz group of ¥ on A? defines a representa-
tion of the Lorentz group O(3, 1) in the complex
rotation group SO(3, C). Upon restriction, this
representation gives an isomorphism of the proper
Lorentz group onto SO(3, C). The reason that the
one possible negative sign in the above lemma cannot
be avoided is that negating a basis element is not a
complex rotation and so this operation on A2 cannot
be induced by a change of Lorentz basis in V.

III. THE PETROV TYPES

Let R denote the curvature tensor at the point m
of the Lorentz manifold M* We shall regard R as a
self-adjoint linear operator on A2, Explicitly, R is the
linear operator such that

{e; Ne;, R(e, A e))) = Ry,

where R, are the components of the curvature tensor
relative to the basis {e;, - - -, &} for V. In the usual
discussions of Petrov types, the curvature tensor is
regarded as a quadratic (i.e., symmetric bilinear) form
on A?%; we shall denote this quadratic form by Q.
Q and R are related by the formula

(&, R(m) = Q(&, ), &, meA’

Note that, although the matrix [Q] for Q relative to a
Lorentz basis (1’) is symmetric, the matrix [R] for R
relative to this basis is not. Since the (7,j) entry of
[R] is e(P;) times the (7, ) entry of [Q], these matrices
are related as follows:

-4 Jem=[4 2] o

Here A, B, and C are 3 x 3 matrices with 4 and C
symmetric.
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The first step in Petrov’s derivation of his canonical
forms is the observation that, if Af? is an Einstein
space, i.e., if the Einstein field equations (expressing
the condition that the Ricci tensor of M* be a scalar
multiple of the metric tensor) are satisfied, then the
matrix for the quadratic form Q relative to a Lorentz
basis for A?is of the form

=[5 2] ®)

where 4 and B are symmetric. Conversely, it is easy
to check that if [Q] is of the form (5) at each point then
M* is an Einstein space. By (4), condition (5) on [Q]
is the same as the following condition on [R]:

W[4 e

where A and B are symmetric. But a matrix [R] of the
form (4) is of the form (6) if and only if it commutes
with the matrix [#] of Eq. (2). Thus M* is an Einstein
space if and only if the linear operators x and R com-
mute; that is, if and only if *R = R+. Equivalently,
since *2 = —identity, M* is Einstein if and only if

*Rx = —R, 7

(Note that, although the star operator is defined in
terms of an orientation on ¥, a change of orientation
merely replaces * by its negative so this condition is
independent of any orientation on V.) In terms of the
complex Euclidean structure on A? described in
the previous section, this characterization takes the
following form: M*is Einstein if and only if R: A% — A?
is complex linear.

The standard classification of symmetric trans-
formations of complex Euclidean spaces now leads to
Petrov’s classification.

Theorem (Petrov): The curvature tensor at a point
m of an Einstein space is of one of three possible types:
there exists a Lorentz basis (1) for the space A? of
2-vectors at m such that the matrix for R relative to
this basis is of the form

A B
R] = ,
m=[2, 7]
where, according to the type of R, the matrices 4 and
B are of the form
Type I:
oy B

4= 0o > B = ﬂZ ’
%3 Bs

Type II:
%y B 0 O
A= % 4+ 1 , B=1{0 B, 1],
oy — 1 0 1 B
B+ 28, =0.
Type II1
«a 1 0 0 0 O
A=|1 « 0|, B=|0 0 -—1].
0 0 « 0 -1 0

Proof: According to standard normal-form theory,
there exists a basis {&;, &,, &} for A% (as a complex
vector space) such that the matrices [g] for g and [R]
for R relative to this basis are simultaneously cast into
one of the following forms:

Type I:
1 (44 T
gl = 1 |, [Rl= o
i 1 L %5
Type II:
00 2, 0 0]
[gl=(0 0 I, [RI=|0 4 vy|,
01 0 10 0 4]
Type I11:
0 01 Ay O
[gl=]0 1 0f, [RI={0 4 v/,
|1 0 0 0 0 2

where y may be taken to be any nonzero complex
member.® For our purposes, y will be taken to be real.

For each type, an appropriate Lorentz basis for
A2 is obtained from {&,, &,, &3} as follows:

Type I: {£;, &, &} is a g-orthonormal set in A2
By the lemma of the previous section we obtain a
Lorentz basis for A? by setting P, = &, P, = &,,
and P3; = 3§; for some appropriate choice of sign.
Defining the real numbers a; and §; by 4; = «; + i8;
we find

RP; = (a; + if)P; = a,;,P; + B, * P,
=“1Pi—'ﬂ1P}L’ j=1,2,3,

and hence the matrix for R relative to this Lorentz
basis is of the required form. The condition 3 8; = 0
is just the algebraic Bianchi identity.

5 See Ref. 3, pp. 228-230. Although, in Mal’cev’s book, the
superdiagonal elements in the Jordan blocks are taken to be I’s
they may, by an elementary change of basis, be taken to be any
preassigned nonzero complex number.
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Type I1: A g-orthonormal set {P;, P,, P;}, defining
a Lorentz basis for A2, is obtained by setting
Pi= &, Py=i(h— &2
P; = (52 + E:s)/\/i
Elementary computations then show that
RP1=“1P1_131P1L,
RP, = (o, = y/)Ps — B:Py + (#/2)Py,
RP; = (2 + /2Py + (7[DPy — P,
where A; = o; 4+ iff;. For example,
RP, = iR(§; — £)IV2 = ilAks — (M5 + 7E)]/V2
= APy — (iy[2)(P; — iPy)
= (g — Y/2)P; + i(B:P; — (¥/2)P3)
= (%2 — ¥/2)P2 — Py + (7/2)Py .

Now by taking y = —2, Eqs. (8) show that [R] is of
the form required for Type II. The condition
By + 2B, = 0 is again just the Bianchi identity.

Type I1I: A g-orthonormal set {P;, P,, Py}, defining
a Lorentz basis A2, is obtained by setting

Pr= (& + EN2, Py= L&,
Py = —i(§, — E)N2,

©)

and we find
RP, = Py + (y/y2P, ~ BP7,
RPy = £(y/\J2)P, + aPy — Py — (2¥/V2)P;,
RPy = aPy — (£7/2)Py — Py,
where A = a 4 i. By the Bianchi identity, f = 0.
Taking y = ++/2 (the sign being the same as that in

the equation P, = +¢&,), we see that [R] is of the form
required for Type III.

Remarks: From the above proof, the following
facts are clear:

(i) The Petrov classification of a curvature tensor
R depends only on the fact that it commutes with the
star operator. Given any curvature tensor (not
necessarily of an Einstein space), it has an invariant
splitting (invariant under the action of the Lorentz
group) into a sum of two “curvature tensors” (i.e.,
self-adjoint linear operators on A?) S and A with the
properties that Sx = %S and A = —xA. Explicitly,
S = 3(R — #R+) and A = }(R 4 *Rx). The tensor
S is equal to C + §(Tr R)I, where C is the Weyl
conformal curvature tensor and I is the identity
operator on A2 It follows that, as is well known, the
Petrov classification extends to arbitrary Lorentz
manifolds M* by considering, in general, S (or
equivalently C) instead of R.

(i)) The Petrov type of a curvature tensor depends
only on the Jordan canonical form of the tensor (or
in a non-Einstein space, of its conformal curvature
tensor) regarded as a complex linear transformation
on A2 In particular, R is of Type I, II, or III depend-
ing on whether R has 3, 2, or 1 independent eigen-
vectors. In terms of the complex Euclidean structure
on A2, Type I is characterized by the existence of a
(complex) basis of nonnull eigenvectors, Type II is
characterized by the existence of exactly one inde-
pendent nonnull eigenvector, and Type III by the
existence of no nonnull eigenvectors.

Remark: Another concept which has proven useful®
in the study of Petrov types is that of the “principal
null directions.” These directions are obtained as
follows: Except when R is a scalar multiple of the
identity (the constant curvature or “Type O” case),
the common zeros of the complex quadratic forms
g(&, &) and g(R¢, &) form a collection of at most four
complex 1-dimensional subspaces of A2 Given a 2-
vector & in one of these subspaces, the condition
g(&, &) = 0 says that £ is decomposable and of length
zero and so represents a 2-dimensional subspace
of V tangent to the light cone in V. The directions in
V determined by the intersections of these 2-planes
with the light cone are the principal null directions.
There are at most four such directions since complex
linearly dependent null 2-vectors represent planes in
V intersecting the light cone in the same line.

IV. SECTIONAL CURVATURE

Henceforth we denote the tangent space to M* at
m by V(m) and the corresponding associated spaces
discussed previously by A%(m), G,(m), and G_(m).
The sectional curvature of M* is the real-valued
function o defined on the manifold

GM) = U G, (m) U G_(m)
meM

of all oriented nondegenerate tangent 2-planes of M
by o(P) = e(P){(RP, P). Since 6(—P) = o(P) for each
P c G(M), the function ¢ may be regarded as a func-
tion on the manifold

GM) = U G (m) U G_(m)
meM

of unoriented planes, obtained by identifying each
P e G(M) with its negative. The characterization of
Einstein spaces given in the previous section can be
interpreted geometrically in terms of o.

8 See, e.g., R. K. Sachs, Relativity,  Groups, and Topology, C.
DeWitt and B. DeWitt, Eds. (Gordon & Breach Science Publish-
ers, Inc., New York, 1964), Lecture VIII. See also Ref. 2.
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Theorem: A 4-dimensional Lorentz manifold is an
Einstein space if and only if its sectional curvature o
satisfies o(PL) = o(P) for all nondegenerate tangent
2-planes P.

Proof:
o(PL) = (P1)(RP+, PL) = —e(P)(R * P, +P)
= —e(P)(*xR % P, P)
o(P) = e(P){(RP, P) = —e(P){—RP, P).

If M* is Einstein, then the characterization (7) shows
that o(P') = o(P) for all Pe G(M). Conversely,
if o(PL+) = o(P) for all Pe G(M), then the above
computation shows that

for all Pe G(M); that is, the ‘“‘curvature tensors”
xR+ and —R have the same sectional-curvature
functions. Since both satisfy the algebraic Bianchi
identity,” they must be the same® so M* is Einstein.

Let ¢,, denote the restriction of ¢ to G (m) U
G _(m). The following lemma will allow us to tie the
sectional curvature of M*in with the Petrov canonical
forms.

Lemma: Pe G, (m) U G_(m) is a critical point of
o, if and only if

RP = oP — gPL, (10)
for some real numbers « and g. The number « is the
(critical) value of o,, at P.

Proof®: Supposefirstthat P € G, (m). Let{e;, "+, ¢4}
be a Lorentz orthonormal basis for V(m) such that
P = ¢, Aey. Then a coordinate system of G, (m) U
G_(m) in a neighborhood of P is provided by the
map

G:(xy, 0, Xxg) = (e + X185 + Xpey)

A (ex + xze3 + x4e0)/| I, (11)

? This Bianchi identity for a curvature tensor R: A%(m) — A2(m)
is just Tr B = 0 where I:

any Lorentz basis for A%(m).

8 The validity of Eq. (9) on nondegenerate 2-planes implies its
validity on nonnull decomposable 2-vectors. Since the set of non-
null decomposable 2-vectors is dense in the set of all 2-vectors,
continuity then implies the validity of (9) on all decomposable
2-vectors. The proof that these two tensors are equal then proceeds
as in 8. Kobayashi and K. Nomizu, Foundations of Differential
Geo;netry (Interscience Publishers, Inc., New York, 1963), Vol. I,
p. 198.

? For an alternate proof, using the Lagrange-multiplier techniques,
see I. M. Singer and J. A. Thorpe, ‘“The curvature of 4-dimensional
Einstein spaces” (to be published).

4 B . i .
M is the matrix for R relative to

where

I =11+ x3 = X1 + x5 — x3)

— (%1x3 — x2x4)2]%-
Computing partial derivatives of ¢ ° ¢ then shows that
P is a critical point of ¢, if and only if Ry;, = 0 for

(k, D) # (1, 2) or (3, 4); that is, if and only if
R(e, A ey) = Rygpses A ey — Ryt Aoy

Setting « = Ry, and § = R,,,, completes the proof
for Pe G (m). Clearly, «a = (RP, P) = o(P). The
proof for P € G_(rm) is similar.

For Einstein spaces, one consequence of this lemma
is that if P e G, (m) U G_(m) is a critical point of ¢,
then so is P1. For, indeed,

RPL = (PL)R+P = «(PL)xRP
= e(PL) » [aP — BPL] = «PL + B(PL)L.

Hence, through the operation of orthogonal com-
plementation, spacelike and timelike critical points
are paired off with one another. Thus in considering
critical points of ¢,, it suffices to consider only space-
like ones; that is, it suffices to consider the restriction
of ¢, to G,(m). Further, for purposes of counting
critical points it is convenient to regard o, as a
function on the manifold G,(m) of unoriented
spacelike tangent 2-planes at m, since consideration
of oriented planes would lead to counting each critical
plane twice, once with each orientation.

Theorem: Let R be the curvature tensor at some
point m in an Einstein space M*. Let o,, denote the
sectional-curvature function regarded as a function on
the manifold of unoriented nondegenerate tangent
2-planes at m. Then the Petrov type of R is determined
by the number 7 of spacelike critical points of ¢,, at
m: for Type I, n = 3 or oo; for Type II, n = 1; and
for Type 111, n = 0.

Proof: Since, in terms of the complex structure on
A¥(m),
aP — Pl = (« + if)P,

the lemma says that each critical point of o, in
G_(m) is an eigenvector of R. Conversely, since

Gy (m) = {Ee A¥m)|g(&, &) =1},

each nonnull eigenvector of R suitably normalized is
a critical point of &,,. By Remark (ii) at the end of the
previous section it then follows that R is of Type III
if and only if n = 0 and R is of Type II if and only if
n = 1. The only remaining possibility is for R of
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Type I when the number of nonnull eigendirections
(hence of critical points of ¢,) is 3 (or possibly
infinite in the cas€ of equal eigenvalues).

The invariants «,; and 8; which appear in the Petrov
canonical forms are the real and imaginary parts of
the eigenvalues of the curvature tensor. But, by the
lemma, the invariants «; may also be interpreted
geometrically as the critical values of the sectional-
curvature function o,,. In order to obtain a geometric
interpretation of the remaining invariants, we must

(R2323 - R1212)

- R2342

- R2342

[H] =2
—Ros

(R3412 - R2314)

R4214

If Ris of Type I and {e¢,, - - -, e} is chosen to cast

A B
Rl =
m=[ %
into canonical form
&y .31
A = xg s B = ﬂ2 ’
g .33

this Hessian matrix becomes

Pr— By
62—51 0

oAy — O 0
2 1

oy — Gy 0 0

% T %

0 B—bh

pr—F O 0

Since X B, = 0, all the a,’s and f,’s are determined by

H and «; = 0,,(e, A ey). Curvature tensors of Type 11
are handled similarly and we obtain the following:

(H] =2

oy, — &

Theorem: Let R be the curvature tensor at some
point of an Einstein space. Suppose R is of Type I or
I1. Let P &€ G.(m) be a critical point of the sectional
curvature o,,. Then all the invariants in the Petrov
canonical form for R can be determined from the
critical value o,,(P) and the Hessian of a,, at P.

For curvature tensors of Type III, the only invariant
is of course the scalar curvature.

V. POSTSCRIPT

While discussing the sectional curvature of Lorentz
manifolds it seems appropriate to point out that, in

(R1212 + R4242) (R4213 - -R3412)
(R4213 - R3412) (R1313 - R1212)

consider the Hessian quadratic form of ¢, at its
critical points.1

Suppose that R is the curvature tensor at m € M*
and that {e,, - - -, e,} is a Lorentz orthonormal basis
for V(m) such that e, A e, is a critical point of o,,.
Using the coordinates given by Eq. (11), an elementary
computation shows that the Hessian matrix

is given by

(R3412 - R2314)

R4214

- R2313

R1314

(R1212 + Rl414)

R1314

spite of what is said occasionally in the literature,!
the function o, cannot in general be extended by
continuity to the manifold of all tangent 2-planes at
m. To the contrary, this can be done only in spaces of
constant curvature.

Theorem: Suppose the sectional-curvature function
g,, of the Lorentz manifold M* can be extended to a
continuous function on the manifold of all tangent
2-planes at m € M*. Then ¢, is constant.

Proof: Suppose {u, v, w} is a Lorentz-orthonormal
set in ¥(m) with u and v spacelike and w timelike. For
each real number ¢, let P, denote the plane spanned by
u and v + tw. Then for ¢ % 41, P, is nondegenerate
and

o(P) = (R A+ tw),uh v+ tw)/(l—1t?

= [(R(uAv), u AV) + 2:{(R(u A V), u A W)

4 2R A w), u A wH]/(1 — £2).

In order for this to be defined and continuous as ¢t —
41, +1 and —1 must be roots of the numerator,
and hence we must have

(RUAD), uhvy=—(R(u AW, unw),

(RuAv),u hw)=0.
Applying this first condition as u, v, and w run through

various subsets of a Lorentz orthonormal basis
{e,," -, ey yields

Rip1z = —Rygy = Rigiz = —Ragzy = Rypzp = — R4

10 This is in marked contrast to the case of positive-definite
metrics where there are more critical points and in fact all the
invariants are determined by the critical values of 6,,. See Ref. 9.

i1 See, e.g., Ref. 1, pp. 88-90.
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This implies that the sectional curvature ¢, has the
same value on each of the coordinate planes ¢, A e;;
this value must then be equal to one-twelfth the scalar
curvature at m. Since every nondegenerate plane is a
coordinate plane in some Lorentz basis, ¢,, must be
constant.

Remark: Although this proof is presented in the
setting of 4-dimensional Lorentz manifolds, it

JOURNAL OF MATHEMATICAL PHYSICS

requires only slight modifications in order to be valid
for manifolds of arbitrary dimension carrying non-
definite metrics of arbitrary signature.
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Translational Invariance Properties of a Finite One-Dimensional
Hard-Core Fluid Using the Grand Canonical Ensemble*
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Translational invariance properties of the single-particle distribution function D,(x, L, z) of the
grand canonical ensemble are investigated for a one-dimensional hard-core fluid. For a fluid of finite
length L it is shown that D,(x, L, z) is nowhere constant. It is shown that, in the thermodynamic limit
and for x far from either wall, D,(x, L, z) is a constant equal to the grand canonical density p.

I. INTRODUCTION

Translational invariance properties of particle
distribution functions of finite one-dimensional systems
have been discussed by Leff and Coopersmith.!:?
Their work was carried out using the formalism of the
canonical ensemble. In particular, Ref. 1 was devoted
to a discussion of a pure hard-core fluid of N particles,
with a hard-core length d. The fluid may be considered
to be contained within a length L by two additional
particles fixed at —3d and L + {d® The single-
particle canonical distribution function at position x
is denoted by D™ (x, L). Leff and Coopersmith have
shown that for a finite system there exists a central
region in which D™ (x, L) is rigorously a constant
provided only that L > (2N — 1)d. No central region
exists if this inequality is violated.

The single-particle distribution function in the
formalism of the grand canonical ensemble is defined
by
o ZNZ (L)

Di(x,L,z) =3

la
N1 NTE(L, 2) (12)

D;N)(x, L).

* Supported in part by the U.S. Atomic Energy Commission.

1 H.S. Leff and M. H. Coopersmith, J. Math. Phys. 8, 306 (1967).

2 M. H. Coopersmith and H. S. Leff, J. Math. Phys. 8, 434 (1967).

8 With this specification of the container walls, the particle
centers are confined to the interval [3d, L — 3d), or a length L — 4.
This is in contrast with the work of Refs. [ and 2, where the particle
centers were confined to an interval of length L.

The fugacity z is defined by
z = ef#),

where A1 is Boltzmann’s constant multiplied by the
absolute temperature, u is the chemical potential,
and 1 is the thermal wavelength. The canonical
configurational partition function is the unordered
integral

Z(L) =LdeN - ~Lde1 exp [——ﬂgjqﬁ(x,- — xi)]
<ol 4]
xop [=p3 4L+ 9= x) ]

where $(x) is the interaction between particles. The
grand canonical partition function Z(L, z) is given by
the sum

2L, z2) = i

2N
N Zn(L). (1b)
It is of interest to ask whether D,(x, L, z) has transla-
tional invariance properties similar to those of
DM (x, L). Intuitively, one expects the answer to be
no. This is based on the fact that, according to Eq.
(1a), Di(x, L, z) is a linear combination of its canoni-
cal counterparts DV(x, L) for all values.of N but
fixed L. Thus, it is clear that some of the terms in the
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This implies that the sectional curvature ¢, has the
same value on each of the coordinate planes ¢, A e;;
this value must then be equal to one-twelfth the scalar
curvature at m. Since every nondegenerate plane is a
coordinate plane in some Lorentz basis, ¢,, must be
constant.

Remark: Although this proof is presented in the
setting of 4-dimensional Lorentz manifolds, it

JOURNAL OF MATHEMATICAL PHYSICS

requires only slight modifications in order to be valid
for manifolds of arbitrary dimension carrying non-
definite metrics of arbitrary signature.
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summation violate the inequality L > (2N — 1)d.
The D{™(x, L)’s associated with such terms are non-
constant functions of x, and it is considered unlikely
that their sum is a constant for certain ranges of
x,z,and L. Also, while the central region encountered
in the canonical ensemble has a firm physical interpre-
tation (see the discussion in Ref. 2), it is difficult to
envision a corresponding statement in terms of the
grand ensemble variables.

In this paper it is shown that, in fact, the above
intuitive argument is correct. In Sec. II it is proved
that, for a system of finite length, D,(x, L, z) is no-
where constant. In Sec. III, a useful identity, relating
D,(x, L, z) to a product of grand partition functions,
is established and is used to investigate Dy(x, L, z) in
the thermodynamic limit. When x is “far” from both
walls, it is shown that D,(x, L, z) approaches p, the
grand canonical density. A novel calculation of the
grand partition function is contained in the Appendix.

II. PROOF THAT D(x, L, z) IS NOWHERE
CONSTANT FOR A ONE-DIMENSIONAL
HARD-CORE FLUID OF FINITE LENGTH

Leff and Coopersmith have shown that D(x, L)
can be written as?

N-1/n _
@il )m6-3)
Zy(L)yn=o\ n 2

X ZN—I—n(L -X — ‘2_1)’ (2)

where the two-particle potential consists of a hard-

core repulsion plus a general nearest-neighbor inter-

action. Now, for a hard-core fluid,

DM(x, L) =

Z.(7) = (1 — md)™0(r — md), 3)
where
, fors >0,
o) = {0 for s < 0. @
Using (3), Eq. (2) takes the form
(N)(x’ L)
N NI/N -1 1 "
= — - -\d
2D (" - (3]

x O[L —x— (N —1—n+ %)d]w—", ©)

provided L > Nd.

1 Because of the present definition of container walls the present
functions Z,(x — 4d) correspond to the functions Zn(x) of Ref. 1.

Equation (5) can be rewritten in terms of a poly-
nomial in x, of degree N — 1, by making two binomial

expansions:
) } n

(N)(x, L)
B zj(rL) & (N )[" (

X G[x— (n +;) :IB[L Nd —x + (n +%)d]
xNgn(—nf[ (n + ) ]

X (L — NdyN-1=n= (N -1- n)

Substituting n 4+ j =/ and changing summation
variables to n and /, we have

N—1 N—1-» N-1 1
> 2 =33
n=0 j=0 =0 n=0

Then, expanding [x — (n + })d]’, we find that

ZVZy(L) 2 o(( Ny m

D x, L
NIE(L,z) (. L) =

(6)

where

= a2l )6

(e (e )]
X (L — Nd)N‘l“’G[x - (n + %) d}

x G[L —Nd—x+ (n + %)d]. )
Thus, D{¥(x, L) is a polynomial whose coefficients are
not constant and which, in general, are complicated.

It is observed, however, that the «!¥’s have one
simplifying property: the interval [3d, L — 4d] can be
divided into segments within which all of the a{¥”’s
are constant. To see this, suppose M is the maximum
number of particles that can be placed in the container,

L€ L—d<Mi<L (8)
L=Md+6, where 0<6<d. ©)

Now divide the interval [§d, L — }d] into 2M — 1
segments, as in Fig. 1. There are M segments of

or

d-3 |3 type I typeII (M-é)d (M-—é')d
1 1 [T 2V | WY “V [ it JI
—t— +—% L }¢ 5
d 3d 5d Sd 3d 4L
°oz 3T LG

F16. 1. The container [}d, L — }d] is divided into segments. The
boundaries of a segment are a vertical bar and an adjacent X.
The bars are located at integral values of d from 3d, and the X’s
at integral values of 4 from L — }d. Within any interval the alfs
and f§,’s are constant.
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length & (Type 1) and M — 1 segments of length d — &
(Type II). From Eq. (7) it is seen that the x depend-
ence of the al’s enters only through the step func-
tions. The step functions change values only at the
boundaries of the above segments. Therefore, within
any one of these segments the step functions are
constant, and thus, the «!'’s are constant.

The distribution function in the grand canonical
ensemble (1) is obtained by summing Eq. (6):

M N-1
Di(x,L,z) =3 > aix™

N=1 m=0

Interchanging the orders of summation, we obtain

M-1 M
Dix,L,z) =3 3 allxm
m=0 N=m+1
or
M-1
Dl(x’ La Z) = z ﬂmxm’ (10)
m=0
where
M
Bun= 2 o’ an
N=m+1

The «!¥’s are constant within any one of the segments
discussed above and, hence, the f$,’s must also be
constant within any single segment. Therefore,
Dy(x, L, z) is a polynomial with constant coefficients
within any single segment.

Since Dy(x, L, z) is a polynomial with constant
coefficients within each segment, D(x,L,z) can
equal a constant if and only if $,, =0 for all m
(m > 0). We now show that in each segment there is
at least one f,, (m > 0) not equal to zero. We start by
looking at f8,,_,. From Egs. (11) and (7), we obtain

.BM—l = O‘(11‘}/1—)1

_ ZM M—1 M—1 NM—1n
—(M—l)!E(L,z)ngo( n )( b

x 0[x - (n + %)d}

xe[L—Md—x+(n+ )d].

1
2 (12)

Using Eq. (9), we find

_ ZM M1 M —1  \M-1tn
—(M—l)!E(L,z)nZo( n )( HE

x O[x - (n + 1)(1}0[(;1 + l)d +6— x].
2 2
(13)
Due to the step functions, B, , is zero when x is

within any of the segments of Type II. However,
when x is within a segment of Type I, 8, ; is not zero

Bar-

and is equal to

b .= ZM(—1) M1+ (M _ 1)

M — DE(L, 2) n
n=2012-"",M-—1.

In this expression, n denotes the Type 1 segment
within which x lies. From this we conclude that
Dy(x, L, z) is not a constant if x lies within a segment
of Type L

We now turn our attention to ;, ,. From Eq. (11),

we obtain

_ L M-1) (A
Br—z = g2 + azrs.

(14)
From Eq. (7) we see that a0, , just as a3, , is zero
in all regions of Type II. Therefore, for all regions of

Type 1I,

Brr—s = oS5
—_ M MZ—2 (M - 2)(_1)M—2+n
(M — D)V E(L, z) n=0 n

x G[x— (n+%)d]
x G[L—(M— ) — x + (n+%)d].

Using Eq. (9), we find

_ ZM—I M-2 M =2 \M—2tn
ﬁM‘z_(M—z)!E(L,z)go( n )( D

X G[x - (n +§)d:|0[(n +§)d +0 —(ﬂs;

From the behavior of the step functions, §,, , is a
constant within each segment of Type II:

¥ M =2\ sz
(M—2)!E(L,z)< n )( D ’

n=01,---,M—2.

In this expression, n denotes the Type II segment
within which x lies.

We have shown that within any segment (Type I
or II) there is at least one §, (m > 0) not equal to
zero. Therefore, D (x, L, z) is nowhere a constant.
This proof is based on the property that the container
can be divided into segments such that within any
segment Dy(x, L, z), for a pure hard-core fluid, is a
polynomial with constant coefficients. This property,
in general, does not exist if an attractive interaction
is added to the hard core. For this reason a proof by a
similar method does not seem possible for a more
general one-dimensional fluid. However, if transla-
tional invariance properties do not exist for this simple

13 M—2=
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fluid, it seems unlikely that they would exist if an
attractive interaction were added to the hard core.
This reasoning is supported by the fact that, in the
canonical ensemble formalism, if there are forces of
range R > d, the length of the region of translational
invariance is a decreasing function of R. -

III. BEHAVIOR OF D,(x,L,z) IN THE
THERMODYNAMIC LIMIT

We start by deriving an identity relating D,(x, L, z)
to a product of grand partition functions. The identity
is valid for a potential consisting of a hard-core
repulsion plus nearest-neighbor interaction. Com-
bining Eqgs. (1) and (2), we obtain

D L) = 3 T TE@ )

x Zn(x — g)zN_l_,,(L —x— g) (16)

0 ZN N-1 N —1
TR

Suppose

yd<x—g<(7+1)d, (a7

where y (an integer) is the maximum number of
particles which can be placed on a length x — id.
We note that, due to the hard-core potential,
Z,»,(x — $d) =0, or the sum on n must be such
that n <. A similar constraint enters due to
the Zy_y (L — x — 4d) term. Since M —y — 1 is
the maximum number of particles placed within the
length L — x — 4d, we must add the additional con-
straint N— 1 —n < M — y — 1. Equation (16) can
now be written in the form

NE:] A (N — 1)

(N — DIE(L, 2)\ n
e pfi=n=d) o

where the 3’ implies the constraints

n<y,

N—n<M-—y. (19)

Looking at a plot of the summation points of Eqs.
(18) and (19) on a N-n diagram (Fig. 2), we find that
the summation includes all points on the shaded area.
Interchanging the order of summation in Eq. (18),

KENNETH MILLARD

N
™+
M-y
FI1G. 2. Anillustra-
tion of the domain of
summation in Eq.
(18), with the con-
straints (19).
7
|
o] — —
Y n
we find
1 3
Dy +-)jd<x< |y+=)d, L,z
2 2
7y M—=y+n ZN 1

n=0 N=n+1 E(L, z)n! (N -1 n)'

d d
x Z,(x = ) Zy (L — x = &).
(x 2)“ ( * 2)

Changing the summation variable N to k = N —
1 — n, we obtain

Dl[(y + %)d <x< (y + %)d, L, Z:I

y M—y—1 _n %
— —Zn(x—c—i)izk(L—x—é).
E(L, 2)S 0 n! 2) k! 2

V4 z
Using Eq. (1b), we find
DII:(y + %)d <x< (y + %)d L z:l

z - d )_ d )
= Hfx —=,z)BE{L —x ——,z
2(L, 2) ( 2 ( 2
= Dy(x, L, ). (20)

The last line follows because there are automatic
cutoffs in the grand partition function for all con-
figurations greater than closest packing.

For the case of a pure hard-core fluid, the behavior
of E(L, z) in the thermodynamic limit is given by
Eq. (All) in the Appendix. Using this in Eq. (20),
we obtain an expression valid in the limit of L, x, and
L — x approaching infinity:

So

1+ s¢d
where Eq. (A13) has been used for the density p. We

Dy(x, L, 2) Totana” = p, 2n
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have found that, in the thermodynamic limit and for
x far from either wall, D,(x, L,z) approaches a
constant which is just the grand canonical density p.

It is also possible to look at Dy(x, L, z) at a wall,
in the thermodynamic limit. Due to the definition of
the walls, the smallest possible value of x is 4d. Using
Egs. (20), (All), and (Al2) we find an expression
for Dy(x, L, z) at a wall, in the thermodynamic limit.

Di(3d, L, 2) > 50 = BP. 22)

This is a grand canonical wall theorem for a one-
dimensional hard-core fluid. It should be noted that
this expression is valid only in the thermodynamic
limit. The wall theorem in the grand canonical
ensemble is usually stated in terms of a grand canoni-
cal average of the canonical pressure, as in Eq. (24),
rather than the grand canonical pressure, as in Eq.
(22). The grand canonical wall theorem for a one-
dimensional fluid follows from Eq. (8.5) of Ref. (5),
which in our notation is given by

(a/aL)Dn(xh s X I L)
+ </3P(N’ L))an(xl, T, Xps 2, L)
= D, 1(X1, X5 Xpi15 25 L)lz,,H:L—%d s (23)
where D,(xy,* -+, x,,z, L) is the grand canonical
n-particle distribution function, P(N, L) is the
canonical pressure, and (f), is the grand canonical

average of the quantity f. Taking the special case of
n = 0, where Dy(z, L) = 1, Eq. (23) becomes

DI(L—fi—,z,L)
2
= Dl(é,z,L).

2

The last step follows from the symmetry of D;(x, z, L)
about §L. The correspondence between Eqs. (22) and
(24) is not surprising since Eq. (22) is valid only in the
thermodynamic limit. One expects that in the thermo-
dynamic limit

(BE(N, L)),

24

(BP(N, L)), = pP.
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APPENDIX: EVALUATION OF E(L, z) IN THE
THERMODYNAMIC LIMIT FOR A
HARD-CORE FLUID

The following calculation of the grand canonical
partition function is carried out formally for a one-
dimensional fluid with hard-core plus nearest-neighbor
interaction. The resulting equation (AS) is applied

5 A. J. F. Siegert and E. Meeron, J. Math. Phys. 7, 741 (1966).

specifically to the pure hard-core fluid. The calculation
resembles in many respects that carried out by Giirsey,?
who uses the convolution theorem repeatedly to
obtain an expression for the Laplace transform of the
canonical partition function. We show first that
Z(z, L) satisfies a renewal equation (A4). This equa-
tion is solved formally by taking its Laplace transform.
Giirsey’s calculation is carried out in the canonical
ensemble. In his calculation, Giirsey uses a generating
function s(z, /) which is similar to the grand partition
function but differs in that it is a function of /, the
length per particle, instead of the container length L.
A function of / has no clear interpretation in the grand
canonical ensemble.

We consider a fluid of N particles with two-particle
interaction ¢(x) consisting of a hard-core of length d
plus a possible nearest-neighbor interaction, i.e.,

w0, x<d,

w(x), d<x < nd,
0, x> nd

B(x) = 1<n<2, (AD

The particles are confined to a length L by two addi-
tional parficles located at —id and L + id. The
canonical configurational partition function is given
by

ZA?(L) = N!J‘ de s f dxl

X exp

—ﬁigl?s(xiﬂ - xi):|
coo[-fu )

X exp :—ﬁgb(L + g - xN)]
= NJ::de exp [—/3¢(L + 221 - xN)]
x (N — 1)! f_ide_l . f;dxl

X exp [—— ﬁ]jg H(Xip — Xi)]

oo 9]

X exp {—ﬂqs[(xN _ g) + g - xN-l}}

Zy(L)= NJ::de exp |:—/3¢>(L + g - xN)j|

x ZN_l(xN - ‘z—i) (A2)

8 F. Giirsey, Proc. Cambridge Phil. Soc. 46, 182 (1950).
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The N!is due to the integrals being ordered through
the potential. Making the substitution xy — 3d =
L — ¢ we obtain

ZAT(L) = NJ d(T e_ﬂ¢(a)ZN_1('L _— 0'). (A3)

Multiply both sides of (A3) by z¥/N!, and sum on N
from 1 to M, the number of particles for closest
packing. Interchanging the order of summation and
integration in Eq. (A3) and using Eq. (1b), we obtain

E(L,z)—1= zf e P IE(L — o, 2) do,

where the definition Z,(L) = 1 has been used. Due to
the fact that the integrand vanishes for ¢ < d and
¢ > L, we may formally take the integral over the
interval [0, L]:

L
BLz)=1+z f ePPIE(L — 0, z)do. (AD)
(1}

Equation (A4) is of the type classified as a renewal
equation.” An equation of this type can be solved
formally by taking its Laplace transform:

(s, 2) =f e LE(L, z)dL
0
1 0 L
=-+ zf et de ePPIE(L — o, 2) do.
N 0 0
Using the convolution theorem, we have
w(s, 2) = L + zy(s, z)lif e e P da].
s 0
Solving for y(s, z), we obtain
© -1
w(s, z) = [s — szf e dcr:| . (A5
0
Equation (AS) is valid for a general nearest-

neighbor fluid. For a hard-core fluid, w(x) =0,
we obtain

w(s, z) = 1/(s — z &%), (A6)
Inverting the Laplace transform, we find
1 a+ioo esL
E(L,z) =— - ds, (A7)
27i Ja—iw § — Zz €°

where g is to the right of all poles. The poles s; in
(A7) occur at the roots of the denominator, i.e.,

§; =z e, (A8)
The solutions of (A8) have the following properties:

(a) There is only one real positive root, labeled s,,
and Re s; < 50 < z.

? For a discussion of the renewal equation, see R. Bellman and
K. L. Cooke, Differential-Difference Equations (Academic Press Inc.,
New York, 1963), Chap. 7.

yd

[
(R,R) 2

{zd,R)

03 ¢

zd xd

(-R,-R) ( zd,-R)

Ca

F16. 3. A closed contour in the complex sd plane. The contour
consists of four segments Cy, C,, C;, and C,. A sequence of such
contours is chosen such that for the nth contour 27n < R <
Qn +1)z.

(b) The poles are located symmetrically about the
real axis.

(¢) For finite z, there are a finite number of s; with
positive real parts.

(d) 2k — D < Im (s,d) < 2k, k= 1,2, - - - .

Choose a sequence of closed contours of the types
shown in Fig. 3, where 27n < R < (2n 4+ 1)#. For
n large it can be shown that

L
es
f —- ds 0.
CotCs+Cy X — Z € ° n=o

In this manner the contour in Eq. (A7) can be closed
and E(L, z) is simply the sum of the residues of all
poles. The residue of the pole s, is found to be

s,
. e (s — sp)
li —sd —szd
s S — Z € 1 + zd e

eSkL

(A9)

using I’Hopital’s rule. The grand partition function can
now be written, using property (b) and Eq. (A8), as

- esoL 0
2(L, {s;}) = +2Re D —.
i) 1+ sod i§11+sid
The prime indicates that the function is written in

terms of the set of poles {s;}. The fugacity z is related
to {s,;} by Eq. (A8).

es,-L

(A10)
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Using properties (a), (c), and (d) it can be shown
that, for large L, the residue of the pole s, dominates
the sum of all other residues.® Hence, the grand parti-
tion function can be written as

E'(L, {s:]) = [€H/(1 + seD)][1 + O(D)], L — oo,
(A11)
where
0<e< .

The grand canonical potential #(8, z) in the thermo-
dynamic limit is defined by

. In=(L, z
(8, z) = lim In E(L, 2) .
L—w© L
The g dependence of E(L, z) has been suppressed.
For the hard-core fluid the grand canonical potential
8 Using property (d), it can be shown that the infinite sum of all
residues corresponding to poles with Res; < 0 vanishes in the

thermodynamic limit. Properties (a) and (c) imply that the residue of
the pole at s, dominates the finite number of remaining residues.
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is
"’(ﬂa S5p) = 5.

where s, is determined by Eq. (A8) with i equal to
zero. The grand canonical pressure and density are

determined from the grand canonical potential® and
Eq. (A8):

BP = 7'(B, s0) = 50,
=z aﬂ'(‘B’ Z) =z a‘IT’(‘B, So) % — SO
- 0z Os 0z 1+ s¢d

Equations (A12) and (Al3) can be combined to
obtain the equation of state:

pl(1 — pd) = BP. (Al4)

This is just the equation of state for a one-dimensional
hard-core fluid.

(A12)

(A13)

? Taking the thermodynamic limit before obtaining the equations
of state follows the definitions of P and p given by M. E. Fisher,
Arch. Ratl. Mech. 17, 377 (1964).
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Linearized equations are set up to describe disturbances in an infinite, spatially uniform, relativistic
plasma without an ambient magnetic field. It is shown that, as well as the usual electrostatic waves, there
also exists a class of electromagnetic waves. The two sets of waves are coupled in general, but can still be
classified as mainly longitudinal or mainly transverse. Under the assumption that the system is stable
against the longitudinal disturbances it is shown that the relativistic plasma will be unstable to the

transverse waves unless it is virtually isotropic.

1. INTRODUCTION

The average age of cosmic rays in the galactic disk
is estimated to be of the order of 5 x 10¢ years.
Also it is known from observation that cosmic rays
are isotropic to better than 19!

These two facts, together with the supernovae
theory of the origin of cosmic rays, make it important
to find a mechanism which reduces an arbitrary
amount of anisotropy (since presumably supernovae
produce cosmic rays anisotropically) to less than about
1% in a time less than, or of the order of, the mean
cosmic-ray lifetime.

* This work was supported by the National Aeronautics and
Space Administration under grant NASA-NsG-96-60.

1 K. Greisen, Progress in Cosmic Ray Physics (North-Holland
Publishing Co., Amsterdam, 1956), Vol. 3, Chap. 1.

It has been conjectured that interstellar magnetic-
field irregularities produce some measure of isotropy
due to pitch-angle scattering. However, not much is
known about the scale size of such irregularities.

It is therefore of interest to examine other possible
ways of producing some degree of isotropy in an
initially anisotropic relativistic plasma. One such
possibility is particle velocity redistribution due to the
influence of plasma waves. It is well known that it is
difficult to make plasma waves carry a significant
amount of energy but for producing isotropy this is
not a prime requirement. In fact, the plasma waves
need only reorder the plasma distribution function in
order to achieve some measure of isotropy. In this

sense the waves take on the role of collisions in a
classical gas.
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Using properties (a), (c), and (d) it can be shown
that, for large L, the residue of the pole s, dominates
the sum of all other residues.® Hence, the grand parti-
tion function can be written as

E'(L, {s:]) = [€H/(1 + seD)][1 + O(D)], L — oo,
(A11)
where
0<e< .

The grand canonical potential #(8, z) in the thermo-
dynamic limit is defined by

. In=(L, z
(8, z) = lim In E(L, 2) .
L—w© L
The g dependence of E(L, z) has been suppressed.
For the hard-core fluid the grand canonical potential
8 Using property (d), it can be shown that the infinite sum of all
residues corresponding to poles with Res; < 0 vanishes in the

thermodynamic limit. Properties (a) and (c) imply that the residue of
the pole at s, dominates the finite number of remaining residues.
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In discussing the behavior of a plasma perturbed by
a disturbance, attention is usually restricted to purely
electrostatic waves since these grow in the order of a
plasma period which, in the absence of an ambient
magnetic field, is the shortest possible time for a
dynamical process.

However there also exists a class of electromagnetic
disturbances whose existence has been recognized by
several authors.2-3 Such electromagnetic waves have
been considered in considerable detail for a non-
relativistic plasma.*

The main reason for considering such waves is
essentially due to the conditions attached to making
the plasma unstable against the electrostatic mode.
These conditions are well known.5 It has been shown®
that the requirements for electrostatic instability are
difficult to meet in several interesting astrophysical
situations.

It is therefore worthwhile considering the electro-
magnetic waves since the requirements for instability
of these waves are much easier to meet. It should be
emphasized that these waves are not the familiar fast
electromagnetic waves with phase velocities of the
order of ¢, the velocity of light. In fact, if the rms veloc-
ity spread is oc, the electromagnetic waves to be con-
sidered generally have amplification rates of the order
of ¢ times the plasma frequency. Consequently, they
are not nearly as violent as the electrostatic waves.
They do have the advantage that the plasma need not
obey such stringent requirements as the electrostatic
mode demands before they become unstable.

In this analysis we do not allow for a galactic
magnetic field despite, the observational evidence
which indicates the existence of such a field with a
mean strength of about 5 x 10=¢ I.” The plethora of
complications which arise when an ambient magnetic
field is taken into account have been the subject of
innumerable papers and books and we make no
attempt to consider them.

In several recent papers®—1° particular attention was
paid to the electromagnetic and space-charge waves
when the relativistic plasma was embedded in an
infinite, homogeneous magnetic field. In all these
papers the tacit assumption was made that there was
no coupling between the two types of wave. We
demonstrate in this paper that, in the absence of an

2 B. D. Fried, Phys. Fluids 2, 337 (1959).

2 E. S. Weibel, Phys. Rev. Letters 2, 83 (1959).

4 F. D. Kahn, J. Fluid Mech. 14, 321 (1962).

5 Q. Penrose, Phys. Fluids 3, 196 (1960).

8 P. D. Noerdlinger, Astrophys. J. 133, 1034 (1961).

” F. F. Gardner and R. D. Davies, Aust. J. Phys. 19, 441 (1966).
8 1. Lerche, Phys. Fluids 9, 1073 (1966).

® 1. Lerche, Phys. Fluids 10, 1071 (1967).

19 1. Lerche, Phys. Fluids 10, 2271 (1967).

ambient magnetic field, coupling exists but barely
influences the space-charge wave. It is also shown that
the coupling seriously perturbs the electromagnetic
wave. Thus the assumption of no coupling in an
ambient magnetic field is suspect and should be
investigated. In particular, under the assumption of
no coupling it can be shown® that the electromagnetic
mode, in an ambient magnetic field, does grow
at a physically significant rate for the cosmic-ray gas.
This result may not be true when interference is
allowed for.

Thus this paper cannot describe the behavior of the
galactic cosmic-ray gas in the general galactic mag-
netic field. The motivation behind this work is
essentially self-educative. We hope that the results
presented here lead to a better understanding of the
physical behavior of relativistic plasmas.

As remarked earlier, a similar calculation to the
following has been performed for a nonrelativistic
plasma.* It is not immediately obvious that Kahn’s
criteria for stability against the electromagnetic waves
can be applied to a relativistic plasma. We show that
while the physical sense of Kahn’s criteria is preserved,
the mathematical formalism changes due to the rel-
ativistic nature of the problem.

We make no attempt to calculate instability rates
for the unstable situations. Such a calculation would
require a detailed knowledge of the distribution func-
tion and in this paper we shall only be concerned with
general properties that a distribution function must
possess in order to avoid instability.

Further, since we do not include an ambient
magnetic field in the calculations, even if we were to
calculate e-folding times for particular distribution
functions, we could not place any reliance on them as
measures of the speed with which an instability occurs
in the galactic cosmic-ray gas.

2. DISPERSION RELATION

We consider only the case of a mobile relativistic
proton plasma without an ambient magnetic field.
It suffices to consider one mobile species since the
theory to be developed uses linearized equations. Thus
more than one mobile species can easily be taken into
account. Along with the proton plasma we assume
that there exists a cold, smeared out, electron charge
background which does not contribute to the motion
and serves to preserve over-all space-charge neu-
trality.

We let the equilibrium relativistic proton distri-
bution function be f; and the first-order linear pertur-
bation to f; be f;. It is then a simple matter to show
that f, satisfies the linearized relativistic Vlasov



TRANSVERSE WAVES IN

equation
U%h,_c %
o (1+p) ox
+i[—V¢ _ 10A Mléﬁ} Doy,
mc ot a+pd ap
6

where ¢ and m are the charge and rest mass of a
proton, respectively. The normalized momentum p is
defined in terms of the real momentum P, through the
relation mcp = P. Here ¢ and A are the scalar-
electrostatic and vector-electromagnetic potentials,
respectively.

We must also satisfy the Maxwell equations

Vip— 228 = _4ne ffld p, )
2 3

VIA — —26_“:_ —dre f1Pd % 3)
ot (1+p%

In addition, we must ensure the preservation of the
gauge condition

1d¢
¢ Ot

We choose a particular Cartesian coordinate system
and allow all first-order perturbation quantities to

vaty as exp [ik(x — cB)]. (5)

We let k be real and positive and  complex without
any loss of generality.

Making use of (5) it can easily be shown that the
solution to (1) is given by

V-A+-—L=0. @

€ afo f
fim (g v 4:5)
L o = B — (A, + pA) + MY
mc*[p(1 + p*)™* — ] 0P
(6)

where use has been made of the gauge condition in
the form

= fg.
We now normalize f, so that
ffO d3p = 13 (7)
when it can be shown that, with the aid of (5), Eq. (2)
becomes
2

k(1 — pyg = 2 Nfdpzdp,,d { % 4,%

mc¢ apy apz

Lo = B — (A, + pAI1 + p ) o,
[p.(1 + P — Bl op,)’
(8)
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and the range of integration in (7) and (8) is
—w0<Lp Lo, —0Lp L© —0Lp L w0

With the help of (5) it may also be shown that (3)
can be written

4meN D
e = pha, =T f G (bbb, .
©
4wéN P
- )4, = f : dp, dp, dp,,
) — (1+p2)5{ }dp. dp, dp

(10)
where the curly brackets in (9) and (10) denote the
factor in curly brackets occurring in (8). Here N is the
number density of relativistic particles.

Defining

O = (1 — B, ki=4néN/(imc®), «* = k%ky>

and noting that (8), (9), and (10) are all linear in
®, 4,, and 4,, we see that for a solution to exist to
these three equations we must demand that

Kkt — L,(B) LB L(p)
LB (1= +g L. —h
+8. + Iw(ﬂ) =0,
_Iz(ﬁ) Iyz(/g) - hyz KZ(I - 132) +gac
+ g, + L.(B)
(1)
where
fO(l + pm) d3 fO(py’pz) d3
x ’ ( y’ gz) _f ’
L+ p» (1 + p%
for,p. d°p L = [ Lt p)'9,/3p, d°p
ol a+ [p. — B(1 + P
(I 1,1, yy’ L,)
_ J fod’p
[pa — B + PO
X (py’pz7 pypzzi’ pyzl’ pzzi).
(T+p) (1+p) 1+p9)

We have also assumed that £, satisfies the usual
convergence conditions as p,, p,, or p, — 4 0.

From the dispersion equation (11) we have a relation
between k and . An unstable situation will develop
if, and only if, a real, positive k exists for which g
has a positive imaginary part.

3. SOME ASPECTS OF THE DISPERSION
RELATION

One point, which is immediately obvious from (11),
is that if 8 is real, positive and greater than, or equal
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to, unity, all the integrals in (11) are completely real
since, for all values of p,, p,, and p,, we have
Po < B(1 + p2 + p2 + pHE. This merely states that
waves with phase velocities greater than, or equal to,
¢, do not resonate with the finite rest-mass protons
which always have subluminous velocities.

Also it can readily be shown that, provided f, is
not pathological, all the integrals in (11) are analytic
functions of § in any one half-plane. Since we are
looking for temporal instability we choose to define k
real and positive and g in the upper half-plane. It is
then well known that as Im (§) — 0+ from above
the resulting functions of § are also analytic on the
real # axis.!! ,

Suppose we now choose the zero velocity to be the
mean particle velocity, say. Then if the equilibrium
distribution has a mean velocity half-width gc, we see
that when 8 3> o, we have

L(B) = O(B7).
L,(B) = O(op™),

Likewise,

and so on.

For those waves with phase velocities close to ¢,
we have o « |f] in most physical situations. Neglect-
ing terms of order 028~2, we see that in such a case (11)
reduces to just its diagonal elements, and the electro-
static and electromagnetic waves completely decouple.
We then obtain the usual relation

@ —L(B) =0 (12)

for the electrostatic mode. The corresponding relation
for the_electromagnetic mode is

KB = k* + k5. (13)
However we are interested in the situation where
|8 < 1. In this case we can replace the factor (1 — f?)

by unity in the electromagnetic diagonal terms of (11).
Then the dispersion relation becomes

«* — Li(f) LB L(B)
—Iv(ﬂ) k® + 8= + & I’uz(ﬂ) - hyz
+ Iw(ﬂ) = 0.
—Iz(ﬂ) Iyz(ﬂ) - hyz w2 + gw + gu
+ I.(B)
(14)

It may happen that a situation is chosen with suffi-
cient symmetry so that

1,(8) = 0 = L(p). (15)

113, D. Jackson, Space Technology Laboratories Report GM-
TR-0165-00535, 1958; see also J. D. Jackson, J. Nucl. Energy Pt. C
1, 178 (1960).

In this case the electrostatic and electromagnetic
modes completely decouple. In general, however, the
integrals in (15) do not vanish and they introduce
cross coupling between the two different types of
modes. From (12) we see that the order-of-magnitude
calculation shows that we are predominantly interested
in those electrostatic modes for which

k=08, B> o,
K= 0(c?), |fl K eo.

In the present situation we are looking at |f] < 1
and, in particular, we assume that ¢ > |8|. Thus we
expect «% to be of the order o—2 for the electrostatic
mode. This is much larger than «* = O(1) which we
expect for the electromagnetic mode. Thus as far as the
electrostatic mode is concerned the coupling can be
represented to a good enough approximation by

= L) LB LB
—1L(p) 0
—Iz(ﬂ) 0 K®

«* = I,(B)

in the second and third diagonal terms, which is
accurate to the order required, we see that (16)
becomes

w* — L(F) =~ —ITALP) + LB (17)

Thus an extra term of order ¢? times the dominant
term has been introduced. This hardly affects the
electrostatic mode at all and consequently the usual
electrostatic dispersion equation is a good enough
approximation to the correct relation.

However the coupling of the electrostatic mode to
the electromagnetic waves is not negligible. For the
transverse waves, we are interested in values of «?
of the order of unity, while

L(B) = O(s7%)

for the slow electrostatic wave. Thus as far as the
transverse wave is concerned, a good enough approxi-
mation to the dispersion relation is

= 0. (16)

Setting

L(B) LB 1B
Iy(ﬁ) K2 + gz' + gz I’_'IZ(IB) - hyz
+ Iz/y(ﬂ) = 0. (18)
Iz(ﬂ) Iyz(ﬁ) - hyz K2 + 8= + 8y
+ 1,.(8)

It is then a simple matter to show that (18) can be
written as

[q + %(Jw + Jzz)]2 = 1(J1m - Jzz)2 + 31212’ (19)
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where
q= K+ 8o =8 +1,— 113[1—1’
=8, +1,.— 1211_1’ Jyz =1, — hyz - IyIzll_l-

4. STABILITY CONSIDERATIONS

As has been done in the nonrelativistic case,* we
now demonstrate that the class of electromagnetic
waves whose dispersion relation is given by (19) is
unstable unless the equilibrium relativistic proton
distribution function satisfies some rather restrictive
conditions.

We consider only the case of even parity distribution
functions, i.e.,

.ﬂ)(‘pmupyapz) =f0(—Pa:9 Py _pz) (20)

Making use of (20) it can easily be shown that
L, 1,1, I, are real, and I, I, are pure imaginary
when f is pure imaginary. We note also that g, g,,
and g, are real and positive.

A sufficient condition for electromagnetic instability
is that there exist a real, positive kX whose § has a
positive imaginary part. Since the right-hand side of
(20) is real and positive and since g = g, + k%;?,
this means that there exists a f in the upper half
complex plane whose corresponding ¢ is real and
greater than g,. This is so if J,, + J,, is real and less
than —2g, somewhere on the imaginary § axis in the
upper half-plane.

Hence, by continuity,

31111 + Jzz < _2gz (21)

when f = 0. We can also ignore the class of situation

for which I, is real and positive anywhere in the

upper half complex 8 plane, since it follows that the

plasma is then unstable against electrostatic waves.

These dominate over the slow electromagnetic waves,
Thus the physically interesting situation is that in

which I; and I2 + I? are negative on § = i (§ > 0).
On f = i we have, therefore,

I tIa=g+ e+, + 1L
— (I + DI < —2g,
and
Iy +3.Lg+g+1,+1,<-2g,.
To avoid instability we require that
1,0 + 1.(0) > —28. — g, — &,  (22)
with equality if and only if 7,(0) = 0 = 1,(0). Now

(P + pd) gfg 3

I 11(0) + Izz(O) = d P = M(O), say.
! p.(1 + Pt dp,

(23)

We now change to spherical momentum coordinates
defined by

p,=pcost, p,=psinfcosy, p,=psinfsing
so that

Setting
o fo(P, 05 (p) d(p = 27TF(p7 9)5

we see that (23) becomes

o] 2dp +1
M) =2 f L——lf 1 —
© ﬂ0(1+p2)§ _1( ©)
x [pa—""w—l(l—ma—’j du (24)
op ou

where y = cos 0.
We note that
0 3 a
o (1 + p** op
o0 2 w0 4
_ p°F dp p'Fdp
= REERT R T
o (1+ py) o (1+p%
We now expand F(p, 0) in terms of Legendre poly-
nomials

F(p.0) = 3 Rou(0)Pan(i), @25)

where the assumption of even parity ensures that only
even polynomials in g enter (25).

Setting o 2
ry, = f PRyu(p) dp
n 1
o 1+ p)
and
o= [ PRt
2n — a
o (14 pY)*
we see that (24) can be written

<] +1
M) = 2= gorznf_l [—3(1 — l‘2)P2n(ﬂ)
+ 17 (L~ @Py ()] du
o0 +1
2723 Jan| (= w)Plp) dp, (26)

where the prime denotes differentiation with respect
to the argument.
It can be shown? that

+1
[, 130 = Pt + 47 = P ) d

=1,, Ssay,
=—4, n=0,
_ (_l)n—122n+l(n!)2

2! , n21,
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so that

M(0) = —8nary + 27 Y i,Fy, + 8~37-T(J0 - 15-2) VX))
n=1

It can easily be shown that

g, + 8. = (87/3)(Jo — J4/5)
and

gx+g1/+gz=47rr0'

Thus the condition that instability be avoided can be
written

o«
n=1

To avoid instability, this result must hold true not
only for the one particular direction of the wave
chosen, namely along the x axis, but for any direction
of the wave normal.

We therefore define a basic direction with respect
to which a given wave normal points into the direction
(%95 vo). With respect to this basic direction we can
write

fo(p) = folp, 2, %) = po(p) + i;l 2_ vin (P)Sen (4, %),
(29)

where the S{™ are spherical harmonics and the
assumption of even parity ensures that only even
harmonics enter (29).

Expressed with respect to a line parallel to the
particular wave normal which points into (4, %),
we can write

fo(p) = E Z FE(PIPEM(1) cos (M@ + €,9,)

n=0 m=0
where the e, , are suitably chosen constants and
P{™(u) is the associated Legendre polynomial.
It follows that g =1 when A= 14,, v = »,, and
then we have

(30)

PR =1; P(1) =0, m#0.

Equating harmonics of the same order in (29) and
(30) we have

foup) = Z ver (0)Sz (%o, vo),

when 4 = 4, v = »,.
Thus

RZn(p) E '/’ér’?)(l’)s(m)(/io H] 1}0)

Defining )
g f yin (P)P" dp
o (1L+p)

we have

2n
Yon = Z \I/'(m)s(m)(lo, 1}0)

Thus the requirement that instability be avoided can
be written

Z 2 i lP'(m) (m)()*o, "’o) > 0.

n=1 m=0

3D

Now the average value of any spherical harmonic,
of order unity or greater, over a sphere is zero.
Therefore, if the sum in (31) must not be negative for
any values of 4, and v,, it must vanish for all 4y, »,.
Since none of the i, vanishes, it follows that

wim =0, n>1.
Making use of (29) we see that this demands

© p2
—————fp, Ao, vy dp = F,, say, (32
J; 1+ pz)%fo(l’ 0> Vo) dp 0 y, (32)
and F, must be independent of 4, and »,.
Denoting the solid-angle element by d€2 it can be

shown'® that
p*dpdQ(1 + piy
is invariant under a Lorentz transformation.

Thus from (32) we can say that if electromagnetic
instability is to be avoided then the number of rela-
tivistic particles moving into any given solid angle
must be independent of the orientation of the solid
angle.

When this is the case it can easily be seen that

M(0) = —8mry + (87/3)(Jy — Jo/5),
for all directions of the wave normal. We also have
L,00) = 1,(0), 1,0 =0,

in this case.
The requirement for avoiding electromagnetic
instability can be made even stronger since we have

that
Jm/ + Jzz S gy + gz + [w/ + Izz’

with equality if and only if [, =0 = I,.

Now at best the right-hand side of (33) equals —2g,
for all directions of the wave normal. Thus [, and I,
must vanish for all directions of the wave normal, in
order that J,, + J,, never be smaller than —2g,,
and thus that instability be avoided.

Both 7, and [, are pure imaginary at § = 0 and
hence at p, = 0. Thus,

(33

(I, I,) = mf dpyf (py,pz)aﬁ;

Changing to spherical momentum coordinates we

dp,. (34)

D=0

12 1, Landau and E. Lifschitz, Classical Theory of Fields (Perga-
mon Press, London, 1951), Chap. 2, p. 31.
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have

(I,,,Iz)-—mf pdpf (cos g, sin @) = %,

do.
26 7

G=n/2
(35)

With £, given by (30) it can easily be seen that
(1,(0), I(0)]
= j? 2

n=0

dP3)(w)
du

|

x dp(cose; ,,, —sin € ).

We again compare the two representations (29) and
(30). We consider a particular wave normal through
A=Ay, ¥ = vy, and let ¢ be measured in the plane
containing the wave normal and the basic line.

Then, near 4 = 4;, v = v,:

0 0

TET ¢=09

oA 00 (36)
—a——cosec}Li <p=E

26 ov’ 2

Equating harmonics of equal order in (29) and (30),
we see that

E FEm(PYPEP (1) cos (M@ + €4,

2n
=Y yiP(p)Ss (4, »). (37)
m==0
Hence, near 1 = 4y, » = », we have
Sim p 6
Sy 5| = s TS o,
m=0 }» Ag. Vo 0=0
as(m)
Z wim(p) cosec
20,V
—fDp )M sin ey,
9 6=0
where we have made use of the fact that
(m)
AP oS _ o at §=0 for m 5 1.
do
Let
(m) m) d
pwzn (p) dp,

then

I(0) = 9G/04, I,(0) = cosec A - 9G/ow,
where

@ (dP(l)(/l)/dH)u 0 v (m)alm)
R0 X WS4,
3 mz_o PO, o Y

We require that 7,(0) and 7,(0) vanish for a// values of
A, v. Hence a similar argument to that employed

G=im
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previously shows that
(m) — O v n m.
Thus it follows that we must demand
| o rmdp = Lo, sy 0w
0

where L, is a constant independent of 4, ».

Thus if a relativistic plasma has a distribution
function which satisfies (32) and (38), then there is no
unstable electromagnetic disturbance with a real
nonzero wavenumber and zero phase velocity.

We can rewrite (38) as

r p*dp [(1 + )t
o (1+ptL p

and we note that p(1 + p*)* = Ve where ¥ is the
particle velocity. Thus (38) demands that the harmonic
mean velocity of those particles moving in a given
solid angle be independent of the spatial orientation
of the solid angle. When (32) and (38) are satisfied
we can show that no electromagnetic disturbance with
a small imaginary $# and real wavenumber can exist.
To prove this we consider the values of 3,,, J,,, and J,,

folps o v)] =L, (39)

near & = 0 (f = i).
Now
1,008 = 3,0 + £ 22| 4 4 Do s
yy yy 85 im0 852
and, since 7,(0) = 0,
03| _ Oy
08 lieo
Likewise,
2%3 o1 2
| %] o
o0& £=0 & £=0 D& Jemo

Making use of the fact that I, I, are real and J, is
pure imaginary when § is pure imaginary, it can be
shown that

Bl _,
08 o
and
193, f A+ %
2 o9& £=0 I’x op,
2
+ [f&/(_l_-'_“pl af“ & :‘ -1(0). (40)
o OP=
Now,
L{0) <0

by definition. Thus, in order that 023,,/d&? be positive,
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it is both necessary and sufficient that

21 2.3
f M _a_f£ d3p < 0.
pe 9P,
It is algebraically complicated, but quite straight-
forward, to show that (41) is obeyed, The method of
proof consists of changing to spherical momentum

coordinates, making use of (32), and expanding
fo(p) as in (29) and (30). Consequently,

03y
9 |y

(41)

>0

and thus
Jw(is) > — 8-

Likewise it can be shown that J,,(i§) > —g, and
3,,(i8) = 3,.(i&), to order £2 It can also be shown that
3,.(i6) = O(&%). As aresult, to order £2, the dispersion
relation becomes

lg + 303, + 3P =0. (42)

Since 3,,(ié) + 3,,(i&) > —2g,, it follows that the
g corresponding to f§ = i§ (£ > 0) is less than g,.
Consequently no real k exists for the given j value.
Thus there are no unstable transverse waves which
have an imaginary, but small, phase velocity and a
positive wavenumber.

5. CONCLUSION

Under the assumption that the plasma is stable
against electrostatic waves, it has been shown that the

plasma supports a class of growing transverse waves
unless the number of protons moving into a given
solid angle and their harmonic mean velocity are
independent of the spatial orientation of the solid
angle. This physical statement is identical to the result
which obtains in the case of a nonrelativistic, even
parity, plasma* except that the statement is now true
for all plasmas both relativistic and nonrelativistic.
The mathematical formalism of the statement is
changed in the relativistic case so that the conditions
for stability remain invariant under a Lorentz trans-
formation.

There are three interesting points worth noting.

First, in principle it is possible to have pressure
isotropy in the relativistic plasma and still have an
electromagnetically unstable situation. In practice it is
difficult to conceive of a physical situation where this
will occur.

Secondly, we cannot state definitely that a relativ-
istic plasma will be stable if its distribution function
satisfies (32) and (38) since no account has been given
of those values of k for which the phase velocity is
different from zero. We can however, state that if the
distribution function does not satisfy (32) and (38)
then the plasma will be unstable.

Thirdly, we have considered only those waves for
which {> ¢ 3 [f[. There still remains the class of slow
electromagnetic waves for which |§] « 1 but || = o.
No account has been given of these waves. Also we
have not considered distribution functions which are
not of even parity.
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Starting from the functional representation of Gel’fand and Naimark, the unitary irreducible repre-
sentations of SL(2, C) are described in a basis of the subgroup E(2) @ D, where E(2) ® D is the
subgroup of all 2 x 2 matrices of the form (§ ), 20 = 1. Physically, this is the subgroup into which
SL(2, C) degenerates at infinite momentum and may be thought of as the 2-dimensional Euclidean
group together with its dilations. Advantages to using the £(2) ® D basis are: (1) It is convenient to
calculate form factors; (2) the generators of E(2) &9 D are represented either multiplicatively or by
first-order differential operators and are independent of the values of the SL(2, C) Casimir operators;
(3) the principal and supplementary series of SL(2, C) are treated on the same footing and, in particular,
have the same inner product; and (4) the transformation coefficients to the usual angular-momentum
basis are related to Bessel functions. The E(2) ® D is used to compute explicitly the finite matrix elements
of an arbitrary Lorentz transformation and to investigate the structure of vector operators in unitary

representation of SL(2, C).

1. INTRODUCTION

The infinite-dimensional unitary irreducible repre-
sentations of SL(2, C) have been studied in general by
Gel'fand and Naimark»? using a space of infinitely
differentiable functions f(z), where z = x + iy, and
x, y are two real independent variables. [n this paper
we start from this space and describe the unitary
irreducible representations of SL(2, C) in a basis
which is diagonal with respect to the subgroup
E(2) ® D consisting of all 2 x 2 matrices of the form
(; %, ad = 1. There are several reasons for using the
E(2) ® D basis.® Physically, E(2) ® D is the subgroup
into which SL(2, C) degenerates in the infinite-
momentum limit suggested for the saturation-of-
current algebra.®® [£(2) may be thought of as the
2-dimensional Euclidean group and D as its dilation
group.] The £(2) ® D basis is also a convenient basis
to calculate form factors at any momentum in those
theories in which particles are assigned to repre-
sentations of SL(2, C).¢ Mathematically, in this basis
the E(2) ® D generators are either multiplicative
operators or differential operators of first order and

* On leave of absence from the Dublin Institute for Advanced
Studies, Dublin, Ireland.

11. M. Gel'fand and M. A. Naimark, Izv. Akad. Nauk SSSR 11,
411 (1947).

21. M. Gel’fand, R. A. Minlos, and Z. Ya. Shapiro, Representa-
tions of the Rotation and Lorentz Groups and their Applications
(Pergamon Press, Inc., London, 1963).

38. ). Chang, J. G. Kuriyan, and L. O’Raifeartaigh, Phys. Rev.
169, 1275 (1968).

4 R. F. Dashen and M. Gell-Mann, Phys. Rev. Letters 17, 340
(1966); in Proceedings of the Third (also Fourth) Coral Gables
Conference on Symmetry Principles at High Energy, University of
Miami, 1966 (1967) (W. H. Freeman and Co., San Francisco,
California, 1966, 1967).

® S. Fubini and G. Furlan, Physics 1, 229 (1965).

8 For theories based on the unitary representations of SL(2, C),
see A. O. Barut and H. Kleinert, Phys. Rev. 156, 1546 (1967);
C. Fronsdal Phys. Rev. 156, 1653 (1967); Y. Nambu, Progr.
Theoret. Phys. (Kyoto) 37, 368 (1966); Phys. Rev. 160, 1171 (1967).
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they are independent of the values of the Casimir
operators of SL(2, C). [The latter feature reflects the
fact that it is the same unique unitary representation
of £(2) ® D which occurs in all unitary representations
of SL(2, C).] Furthermore, in the E(2) ® D basis the
principal and supplementary series of unitary repre-
sentations of SL(2, C) are treated on the same footing.
In particular, the E(2) ® D inner product is local
and is the same for both series.

In Sec. 2 we describe the physical meaning of the
E(2) ® D subgroup, and in Sec. 3, the relationship
between the E(2) ® D basis and Gel'fand—Naimark’s
functional representation is established. In Sec. 4
the transformation functions between the E(2) @ D
basis and the usual angular-momentum basis are
given explicitly. In Secs. 5 and 6, the E(2) ® D basis
is used to compute the finite matrix elements for an
arbitrary Lorentz transformation in the angular-
momentum basis and to study the general structure of
vector operators in unitary representations of SL(2, C).

2. MOTIVATION FOR E(2)

The exploration of the E(2) basis is motivated by
the theory of current algebra at infinite momentum
of Dashen and Gell-Mann* and of Fubini and Furlan,’
who suggested that the current algebra should be
saturated by one-particle states at infinite momentum.
It is known that in the infinite-momentum limit the
homogeneous Lorentz group SL(2, C) degenerates
into a 4-parameter group E(2) ® D.” Mathematically,
if we represented the SL(2, C) by its fundamental
2-dimensional representation

() @

7 See for example, H. Bacry and N. P. Chang, Ann. Phys. (N.Y.)
47, 407 (1968).
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with «d — By =1, the E(2) ® D subgroup is the
subgroup f = 0. A simple physical interpretation is
the following: For large momentum the mass term
is small in comparison with the momentum, and, in
the limit p; = oo, it becomes zero. The E(2) group in
EQ2)® D is just the little group of the massless
particle,® and the D in E(2) ® D is the group of
dilations of the (lightlike) momentum which leaves
the direction unchanged. To understand how the
group SL(2, C) degenerates at p; — 400 into this
subgroup, we consider the acceleration along the z
axis. Under this acceleration any operator O trans-
forms according to

0 > ei}.KaOe—ilKa

@

It is easy to see that the six generators of SL(2, C)
can be classified into three pairs according to their
transformation laws:

A
E1.2 - & El,2 >

L3,K3<'>L35K35 (3)
Fi,— e"lFl'z,
where
E,=K,+L,, Ez=K,~L,, G
Fi=K, —L,, F;=K,+ L,, &)
and
[L;, L;] = ie;ply, [L;, K;] = i€ 3Ky,
[K;, K;] = —ie; Ly (6)

form the conventional basis for the SL(2, C) algebra.
Since there are no elements of the algebra which are
multiplied by a factor ¢2* in (3), it follows that
the E’s and F’s, respectively, must commute among
themselves. A similar argument leads to the conclu-
sion that the commutator of an E(F) with L; or
K, is again an E(F). This is why E, ,, L, and Kj close
to form a subalgebra. A similar argument applies
for any vector V,, such as the current or the
4-momentum. The transformation (2) yields

V1,2 - V1,2 s
Vot Va— e'(Vy £ V),
so that (E, V, + V,) and (F, V. — V) form commut-
ing sets.

3. CONSTRUCTION OF THE E(2)
BASIS

In this section, we consider the unitary representa-
tion of SL(2, C) in the infinite-momentum £(2) basis.
We choose our vectors (e, , €,) as the eigenstates of the
generators E; and E, with corresponding eigenvalues

8 E. Wigner, Ann. Math. 40, 149 (1939).
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€1, €;. The spectrum of E; and E, is the continuum
(~— 0, 0), and the usefulness of F(2) rests on the fact
that, because the ¢’s are continuous, the usual algebraic
equations reduce in the E(2) basis to differential
equations. To construct the explicit representations
for the generators of the SL(2, C) in the E(2) basis,
we start from Gel'fand and Naimark’s classical
approach of representing SL(2, C) by transforma-
tions on infinitely differentiable functions. Gel'fand
and Naimark showed that it is always possible to
describe an irreducible representation of SL(2, C) by
proper transformations on a set of infinitely differen-
tiable test functions ¢(z,2), where z = x + iy,
Z=x—1y, x and y being two real independent
variables, and for notational convenience we write
#(z, Z) as ¢(z). If the Lorentz transformation g is
defined by the 2 x 2 unimodular matrix

()

then, in a general irreducible representation of
SL(2, C), it is represented by the transformation®

T(9)$(2) = (Bz + O)" ' (Bz + 8¢ (:5%—}%) ™
where
m=jo+c hHy=—j,+c¢

are Casimir operators.!® To find the connection be-
tween this functional representation and our E(2)
representation, we write Eq. (7) in infinitesimal form:

S0
E, =2i—,
MY’
d
E.=2i%,
laz
0 _0 1
La—l:Z‘a;—Zg-FE("z nl):la
. d _0d i
K3—1[1+zé—z+za—i—-5(n1+n2)],
F+=1[2zz—a-—2(n1—1)z}
i 0z
Fo= %[2523 — 2n, — 1)2}
i 0z
where
Ei=E1:i:l.E2, F:‘:=FliiF2.

9 1. M. Gel’'fand, M. 1. Graev, and N. Ya. Vilenkin, Generalized
Functions (Academic Press Inc., New York, 1966), Vol. 5, Chap. III.

10 The Casimir operator j, is the smallest value of / (spin) in the
decomposition of the irreducible representation of SL(2, C) into the
representations of SU(2). The Casimir operator ¢ is chosen to be
imaginary for the principal series.
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So far, we have not discussed scalar products. We
now wish to emphasize that in the z space the scalar
products for principal series (n, = —#,) and supple-
mentary series (n; = n, = real number ¢, 0 < |c] < 1)
of unitary representations of SL(2, C) are quite
different. The positive scalar product?® for the principal
series is given by

@9 =3 [#@0e) dz 2
and for the supplementary series it is given by
\2
(0.) = (5) 12— 227 a0 e derddzp .

The highly nonlocal structure of the scalar product
in the supplementary series indicates that the z space
is not suitable for actual computation.

The infinite-momentum E(2) basis is characterized
by the condition that E, and E, are represented
multiplicatively. Now since in the z basis E; and E,
are represented by two independent first-order
differential operators, this suggests that to reach the
E(2) basis we should make a Fourier transformation.
Making the Fourier transformation

_{1dzdZ jiusrin
$(w) f S g,
= w; + iw,,

we find the following realization in the Fourier-
transformed space:

E_=w,

=

L= l:waiw—- w%+%(n2— nl)],
K3=1i[1 +w5%+ Wé%v+%(n1+n2)}
F+=4(%w%+n,%),
1?_-:4(53;v %+ ngé%).

The scalar product in the w space reduces to

»

(v, 9) = ; J PW)Gw) dw d¥ ®

for the principal series, and

o _l. 2¢ - -
(p, ) 2fIWI p(w)p(w) dw dw

for the supplementary series. E; and E, (also £ )
are represented multiplicatively in this space, as
required. However, the w basis is not the final basis

that we are looking for. The reasons are: (1) the
additional terms (1/2)(n, — n;) and (1/2))(n; + n,)
appearing in the representations of L, and K should
be removed in order to give a simpler basis for the
subgroup E£(2) ® D; (2) although the scalar products
for the principal and supplementary series are now
local, they are still different. The nice feature, however,
is that by making the similarity transformation

$le,) = wtwdnd(w), e, = ¢ + ie, = (w, W),
®

these two disadvantages can be removed simultane-
ously. The transformation (9) yields

E,=¢,,
0 0
L= (e,-L —c 2
8 (€+ Oe, - ae_) ’
1 0 0
K=114+e L 42
? ,-( +€+ae++‘-ae_)’ (10)
9 0 nl
F,o=4—ec — — -2
" ae_E_ae_ e’
2
F¢-—4—a—e+i—ﬁ,
O, Oc, €,

for the infinitesimal generators, and

(v, ¢) = f dey deyple)le.)

for the inner product for both the principal and supple-
mentary series. It is now natural to introduce a
Dirac basis!? {¢,, ¢,| such that

Pley) = (€1, € ' #),
(e1s €3] €15 €) = 8(e] — €)d(ez — €5).

In terms of €, €, basis, Eqgs. (10) can be written as

(€1, le E1,2 = €19 <51 s sz

1 0 0
3 L = ~ = P ’ ’
(€15 €| Ly i(€1 2e, €2 551) (€1, &)

1 0 0
@ alLi=1{1+a - +a )@,

i Oe, Oe,

oo 0* 2 0
€, Fi=le—+ 26— —¢— +2—
e el By e ih : ¢, 0¢, “ O<3 + O¢,

.2 2 L. -
+ e + 2ijoc
_ U )212 YoCEy lex, &l
-9 22 ik 0
€] Fy=|€ya — €3 + 2 2 2
. ol Fy | #8e @ Ok L O¢,O¢, + Oy
.2 + 02 — 2ii -
— (o )6:2 Yol (&1, ],
€=+, (11)

11 See, for example, P. A. M. Dirac, The Principles of Quantum
Mechanics (Oxford University Press, London, 1958).
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with the same inner product; and in terms of the
polar coordinates ¢, L; = m, Eq. (10) takes the form
(&, mE, =e(e,m F 1,

(&, m| Ly = m (e, m|,

(e m| Ky =¥(1 + eﬁ—)(e,ml,
i de

2

i)
(e,mlFi=[55€—2+

L FED =Gy ﬂ:cf]@, mF 1, (12)

2
3F 2m)—
(3 F 2m)

€

where the inner product is now
(e, m' ] e, m) = 0,,.,.(1/e)d( — €)

for both series. The bases (11) and (12) are the
Cartesian and polar forms, respectively, of the re-
quired E(2) ® D basis. The E(2) ® D basis has the
following features:

(i) The generators E, ; and L,, K, of £(2) ® D are
multiplicative and first-order differential operators,
respectively.

(ii) These four generators are independent of the
values of the Casimir operators j,, ¢ of SL(2, C).

(i) The inner products are the same for the
principal and supplementary series.

(iv) The transformation functions from the (e, m)
to the angular-momentum basis are related to Bessel
functions (Sec. 4).

These are the advantages of the E(2) ® D basis.
Of course, in this basis, the two extra SL(2, C)
generators F, are quite complicated second-order
differential operators and are strongly dependent on
the Casimir numbers, but for many purposes this is
not a serious complication.

We conclude this section with the following observa-
tion: By making an appropriate similarity transforma-
tion in the original z basis, one can obtain a k basis
k = ky, + ik, in which all the SL(2, C) generators are
represented by first-order differential operators, and
the dependence on the Casimir operators has been
removed from L, and K. In this basis, we have for the
Cartesian form

a k, + bk
skl By = (i3 +bf—2)<k1, Kl
d — bk
(ky s kol Eg = (l 5‘,;‘2 + -—_-2k2 1') (ky s ksl,
]
ey, ol Ly = (kl P ak)<k1, kol

S. J. CHANG AND L.
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k le—i(1+k a+k )(k ko

19 2 3 a Zak 19 2
oy e 3

<k1,k2|F1={; e — k2> o+ ok +2k1]

+3 (akl - bkz)} Uy K,

0

ki, k)| F k2——k2— 2k ky —
(ky » kel Fa = {[( Dor ks

2k
o, + 2‘J

+ 5 (ak, + bka} ey kol (13)

where a, b are real, satisfying

3b* — a®) = j5 4 &, fab = jiic.

For the polar form we have
k, m|E, = 1(m¥1) a:Fib)k {
o ml Es (ak:F k 2 Jem T
<k’ ml La =m <k’ m,
(ky m| Ky = i (1+k )(k ml,
k, m] F, = {.—[k 2 fmx 1)k]

iL ok

+ g(a + ib)}(k, mF 1. (14)

Furthermore, the inner product in the & basis takes
the simple form

(k' [ Iy = o(ky ~ ky)o(ky — ko),

m' |k, m) = 8, n(1{)O(K — k),

for both the principal and supplementary series. Thus
the principal and supplementary series can also be
described simultaneously in a basis which is closely
related to the z basis. Of course, in the &k basis, the
E(2) translations are not represented multiplicatively
and are not independent of the Casimir numbers.
On the other hand, the & basis has the advantage that
the self-adjointness of the SL(Z, C) operators can be
verified directly, essentially because these operators
are first-order differential operators. In fact, the self-
adjointness of the generators is guaranteed in all the
bases that we have used by construction, but it is not
so easy to verify it in the ¢ basis for example, because
of the complexity of F . In conclusion, we note that
the transformation coefficients between the polar &k
and e bases are

<k9 m’ l €, m> = 6m’mil—m(k€)%m‘]m+1}b(ke)’

and that in these bases the finite acceleration exp iiK,
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has the simple forms

(e, m| e* K3 = ¢* (ee, m|,
(k, m| K3 = e (e7*k, m|, (15)

which are very useful for computing its finite matrix
elements in the angular-momentum basis (Sec. 4).

4. TRANSFORMATION COEFFICIENTS

In this section we find the transformation coefficients
between the E(2) @ D basis and the usual angular-
momentum basis of SL(2, C). Since in the angular-
momentum basis

is diagonal, it is obviously most convenient to take
the ¢ basis in its polar form.

To evaluate the transformation coefficients between
the base vector (e, m| and the usual angular-mo-
mentum base vector (/, m|, we use the standard tech-
nique first to evaluate (e, /| /, /). Recalling that

(&, + 1| L, |,[) =0, (16)
we have
d* d , P—(+0?
— 1 -2+ ——— —
[€d€2+( )de+ € G:I
X I|L1=0.

The only solution which is square-integrable at e = o
is

{e, 1| LD = €K, , (e), (17)
where K; | (¢) is the modified Bessel function of order
Jjo+ ¢.**and
e, =272/ + DI Go + /1 + DT+ ¢ + 1)

x Dl — ¢+ DI —jo + D2 (18)
The general transformation function (e, m | [, m) can

be obtained from (e, /| /, /) by the repeated use of the
lowering operator L_, giving

e, m| 1, m)
= —=m{+m+ DI e,m L_|Lm+ 1)

_i_ 1 4
= mtm+ ot +om+ 37

Lt = Gy =

€

—ejl(e,m+l|l,m+1)

- O ]
(19

12 M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions (Dover Publications, Inc., New York, 1965).
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where
& 1d *
B =— = — = — 1 20
) dé® + ede € 20)

is the Bessel operator. Since these functions are
related simply to Bessel functions, we can transform
our result from one basis to another very easily.
It is rather straightforward to verify that (e, m' | I, m)
are square-integrable functions of e, and that they
form an orthonormal basis (see Appendices B and C).

The transformation function <k, m |/, m) can be
computed analogously:

(k, m | 1, m)
_ 1
T D(m 4+ 3b+ 1)
(L+ m)! 20 + DI + 3b + DTF
[ (I —m T + 1 — Lb) }
x km+%(b+z‘a)(l + kz)—z—l—%m
X F(—=l+m, =1+ 3b;m+ b+ 1; —k?)
_ z_m_l_%m{(l + m)! (I —m)201 + 1) T
D4+ 14 3001 + 1 — $b)
x (1 — x)%m+%(b+ia)(1 + x)%mﬂ—%;(zma)

1 1
x Pz,

@D

where x = (1 — k?)/(1 + k?). The F(a, b;c;z) are
hypergeometric functions and P{*? (x) are Jacobi
polynomials.’? The orthonormality condition can be
verified easily by using the orthonormality conditions
of the Jacobi polynomials. Note that the transforma-
tion functions between the E(2) and the SU(2) bases
are related simply to Bessel functions; in the k& basis
and also in the 6 — ¢ basis introduced by Strém,®
these functions are related to the hypergeometric
functions. This is one of the advantages of the E(2)
basis mentioned earlier.

We verify the conditions on the Casimir operators
for which an irreducible representation of SL(2, C) is
unitary. The requirement that (e, m |/, m) be well-
defined and square-integrable (see Appendix A) im-
plies that

2j, and [ — j, are nonnegative integers,
and
|Re ¢} < 1.

The unitarity condition implies

(o +0)*

(Jo = o 22)
These conditions lead immediately to the following

13 S, Strom, Arkiv Fysik 34, 215 (1967).
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two classes of unitary representations:

(1) Principal series: j, = integer or half-integer,
¢ = pure imaginary;

(2) Supplementary series: j, = 0, ¢ is real and
0< el < 1.

Finally, we should mention that, although we have
confined ourselves here to the case of unitary rep-
resentations of SL(2, C), the E(2) ® D basis actually
has a somewhat wider domain of applicability. For
example, it can be used for nonunitary representations
of SL(2,C), whose restrictions to E(2)® D are
unitary.

5. FINITE MATRIX ELEMENTS

In this section, we wish to apply our infinite-
momentum basis to some specific problems. In partic-
ular, we compute the matrix elements of a finite
Lorentz transformation in the angular-momentum
basis. It is known that an arbitrary Lorentz trans-
formation can be reduced to the standard form

L= —i -Je—i).ng—im'J’

where e~ and e stand for the usual 3-
dimensional rotations, and e~**Ks for an acceleration
along the z axis. Since the operation of rotation on
angular-momentum base vectors {/, m| is well known,
the only nontrivial matrix elements to be computed
are

&', ml e 531, m).

For definiteness, we assume [’ > /. We first compute
the special case of m = /. In evaluating these matrix
elements, we transform the base vectors (/, m] from
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the angular-momentum basis to the infinite-momen-
tum basis, giving

1 e Es L
=f ede(l', ] | € e, I e B3| )., (23)
0
Making use of Egs. (15) and (19), we have

@ +n 7t

<l,, ll e—-ilKa Il’ l> —_ (_ } CiclﬁH-l

1 V-1
Zi) l:(l' - DHren
X J:oe de{B jo+c(€)ll—l[€ TK J'o—c(e)]} K :‘b+c(I35)

- () TS

x f ¢ de &K, (OB, o Ko, (24)

where, in the derivation of the last equation, we have
used integration by parts. It is easy to see that the
surface terms always drop out automatically. Now,
we use the property that

Bigt(OKiro(Be) = [B2B; o(Be) + B2 — 1]K; 1 o(Be)
—(1 = AK; 1 (Be) (25)

and obtain

W, 1 e )
¢+n 7t

= (é)—[(l _—y (21')!} e — A
x[eder i, @K b 0

The definite integral is well known* and leads to

DRI+ DTG+ P+ DET + e+ DI — e+ DI —jo + D

I 1 e L 1) = i"_l[

3
I=Dr@NQ+ NI e+ 1+ DI+ ¢+ DI — ¢ + DI — jo + 1)}

X Pt BYEG U LU e+ 1321 +2;1 — 8. 27)

The general matrix elements for m 7 /can be obtained
through the following recursion formulals:
ai;z,m+1a£n,m+1 ', m| e~ AKs |1, m)

. .
= oy mio®stmys (om + 2] 3L m + 2)

+ [Z(m + 1) sinh /1% + 2(m + 1)cosh 4

+ 2i(jqic) sinh z}a', m 4 1| K| m + 1),

(28)

where = (= m)( + mE.

The results obtained here have been obtained also by
Strém using a different method.

6. VECTOR OPERATORS

In this section, we wish to construct the vector
operators in the infinite-dimensional representations
of SL(2, C).2 Even though it is known in principle
how to construct vector (and tensor) operators in the
infinite-dimensional representation of SL(2, C), it
turns out that the actual explicit construction is quite
easy in the E(2) basis. Since it is well known that, in
general, one can not construct a vector from a single
irreducible representation of SL(2, C), we start from

14 W. Magnus and F. Oberhettinger, Formulas and Theorems for
Special Functions of Mathematical Physics (Springer, New York,
1966), third ed.

15 8. Strém, Arkiv Fysik 30, 267 (1965).
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a set of such representations. They are labeled by their
Casimir operators j,, ¢, but we suppress the j, , ¢ labels
and interpret the numerical coefficients which relate
states of different j;, ¢ as matrices in the j,, ¢ space.
A general 4-vector ¥V, satisfies the following commuta-
tor relations:

Vo + Vs, Ls] = Vo + Vs, Ei] =0,

[Vo + Vs, Ks] = i(Vo + V), (29)
1
Vy=VxiV,= E (Vo + Vs, Ful,
1 i
Vo—Va=—IV_,F]=—1[V,,F] (30
2i 2i
[V+aF+] = [V-—,F-—] =0,
Vo — Vs, EL]=0. 31

Equation (29) determines the structure of the matrix
elements of V, + V;in the E(2) basis, up to a constant

matrix G in the (j,, ¢) space. We have
(e, m| (Vo + V3) = Ge (e, m|. (32)

The corresponding expressions for V., Vy — V, can
be obtained from Eqs. (30) as

. d 3F2m
V,=1iGle—
(e, m| V. {l (e % + 5 )

+%[G, (o £ c)2]} e

<E, nll (VO - V3)
ot 0 4m’—1
4e )

— G, (o + c)z](ai€ Lt 1)

2e
1 — Zm)
2e

_ 41 [[G. (o — o), o + C)z]} @ml. (33)
€

— 3G, (o — 0] (63 +

Equations (31) are the consistency requirements. They
impose a restriction on G, namely,

[[G, »i], vi] = 2{% — 4, G},

with v = j, &+ c.

It is straightforward to verify that these two equa-
tions are the necessary and sufficient conditions for ¥/,
transforming as a 4-vector. Equations (34) can be

(34
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solved symbolically, giving

0 0
G = fi(vy, v.) exp (a;‘ + 5;:)

] 0
+ folv., v ) exp (— 8—v+ + a_v_:)

0 d
+ filr ) ex - 5;)
N4 A% _

+ i ) exp (= 5 - i),
where f(v,., v_) = f(Jo, ) is an arbitrary function of
Jo and c. Operating on the base vector (e, m; jo, |, we
have
(Jos el G = f1(Jos €) {jo + 1, ¢l

+f2(j0s c) <j0, c—1|

+ f3(Jo> ©) {Joo ¢ + 1]

+ fa(Jo» ©) (Jo — 1, ¢l

This indicates that a vector operator can only connect
a state of (j,,c) to other states with Aj, = 41,
Ac =0, or Aj, =0, Ac = £1.2° It is interesting to
recall that the necessary condition for a single unitary
irreducible representation to possess a vector operator
is given by the requirement that Eq. (34) has G =
const as a solution. This leads to

Gl(jo £ ¢)* — 11 =0,

which implies that only the Majorana representations
possess a vector operator.

Up to this point the construction of the vector
operators is quite general. However, since the vector
operators are very important in constructing infinite-
component wave equations, we shall now construct
the vector operators for a very special class of repre-
sentations, namely, the class of parity-doubled
unitary irreducible representations

(jo’ C) @ (j07 —C).

The criterion that these two representations possess a
vector operator is given by

Jo—1=—j, or jy=4
The matrix G is now given as a 2 X 2 matrix in the
¢ space. For ¢ # 0, there are only two linearly

independent operators, and their G matrices can be

chosen as
(0 1), G, = (0 —i)'
1 0 i 0

1€ These selection rules can also be obtained easily by sandwiching
Egs. (34) between states with eigenvalues v’, v, giving (v' £ )2 = I,
as required.

G, 35)
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The vector operators are then determined completely
by Eq. (33), with
Gy, (jo ‘:E c)’] = F2icG,,
(G, (jo =+ ¢)}] = 42icGy,
[[G1,2’ (Jo+ &L, (jo — )*] = 4([6‘)2G1,2,

where G, , G, are the 2 X 2 matrices in (35).
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APPENDIX A

In this appendix we wish to verify that the trans-
formation functions {(e, m ] I, m) are well defined
when we make the restrictions

2j, = nonnegative integer,

! — j, = nonnegative integer, (A1)

and Rec| < 1,

What this means is the following: according to the
text, the transformation functions are determined by
the requirements

(&, + 1| L, [,y=0 (A2)

and

= const € "B/ "y (e)e¥e, 1 | L. (A3)

But we could also construct our transformation
functions from the state of the lowest eigenvalue
m = —I/, using

(e, =I— 1| L_|, =1)=0 (A4)

and step up, and these two procedures should lead to
the same results. In other words, the transformation
functions constructed according to Eqs. (A2) and (A3)
should satisfy (A4) automatically. This is a consistency
requirement which eventually determines the possible
eigenvalues of the Casimir operator j,. In the next
two sections, we verify that, under these conditions,
these transformation functions are square-integrable
and form an orthonormal basis.

Let us now check the validity of Eq. (A4) under the
assumption that we have constructed our transforma-
tion functions according to Egs. (Al) and (A2),
giving

(&, m| 1, m) = e ™ B, _o()""e¥K; ..(€).
Equation (A4) now takes the form

B, (MK, (e) = 0. (AS)

O’RAIFEARTAIGH

To check (AS5), we make use of the identity

jotc ld 2o jo—¢
Kiu+6 = €5‘o+ (; —) (E]0 Kjo—c)’

de

(A6)
and have
Bio—c(€)2l+1€21Kjg+c(€)

= B. ( )2l+1 2l+70+c(1 d
jo—¢

JocK .
d) (€K, )

€ de

=B, . (6)2l+1(€i —2l—jo—c+ 2)
de

d
X [e— — 2] — j, — 4} ---
(Gd Jo C+)

€

x (edi U —jo—c+ 410) SIK, (o).
€

(A7)

Next, we bring the Bessel operators to the Bessel
function. Using the relations

B(e)" (e— + a) = [(ei +a+ 2n)Bv +2n}33—1,

B (e’ = [5233 + 4m (edi +2m + 3)B
€

+ 8m(m + 1):| Bs(m—l)—\‘—l,

n, 2m = positive integers, (AS8)

we find immediately that we can always bring the
Bessel operators through the intermediate factors
and have exactly one factor left over to operate
directly on the Bessel function K _, and consequently
annihilate it. This completes the proof that Eq. (AS),
is indeed satisfied. Note that the proof depends
critically on the fact that 2j, and / — j, are non-
negative integers. We therefore conclude that these
relations are not only sufficient, but also necessary
for the consistency of Egs. (A2)-(A4).

APPENDIX B

Next, we ask under what condition the transforma-
tion functions are square-integrable. Since the
transformation functions are effectively the Bessel
functions which are analytic between 0 and co, we
only need to consider the behavior of the transforma-
tion functions near the origin and at infinity. For large
¢, the modified Bessel function behaves asymptotically
as '

lim K (€) ~ (3) e,
€~ o0 2e
which implies that the transformation functions are
always square-integrable at infinity. We then study the
behavior of the transformation functions at the origin.
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It is straightforward, though quite tedious, to verify
that the transformation functions behave at the
origin as

KG, m | l, m>| ~ Elfo—|m| |—|Re <] (Bl)

(with an extra log e factor in the case that j, & ¢ is
integer). We therefore conclude that the transforma-
tion functions are square-integrable with respect to the
metric e de, if

[Re ] < 1. (B2)

It is worth noting that even though Gel'fand-
Naimark’s functional representation is applicable to
all irreducible representation of SL(2, C), our E(2)
basis is comparatively limited. The reason is that even
though all the irreducible representations of SL(2, C)
can be represented by some classes of infinitely differ-
entiable functions ¢(z), only in certain representations
do these functions have Fourier transforms. Equation
(B2) is the criterion for them to have Fourier trans-
forms. In particular, the finite-dimensional repre-
sentations of SL(2, C) are represented in the z basis
by polynomials, which do not have proper Fourier
transforms. This is understandable, since for finite-
dimensional representations E2? is nilpotent and,
consequently, the E(2) basis does not exist in any
useful sense.
APPENDIX C

It is now a simple matter to verify that the trans-
formation functions form an orthonormal basis.
Since the orthogonality condition for different values
of m is trivial, we consider only the transformation
functions with the same value of m. Starting from the
relations

(I, m

€, m)

=(¢ﬂW¢mﬂim+nﬁ
2i

d? d
4 34 0m) = —
x[ed€2+( + m)dE €

4 (m* D? = Go£ o

€

:|<l,m:|:1|e,m:|:1>,

we have
JHHKMIQW&MMLm% >l
1, , [ &
=fede2—i[(l —m){l' + m <+ 1)] H:e;i:é

+@m+n§—e+m+n%4h+&}

€

x({I',m+1|em+ 1>:<e, m

1, m)

- J~e de% [ = m)(t + m + )]

x d',m4+1 €m+l>[ed—2+(l—2m)i
’ ’ dé de
2 _ N2
— € +w:|<e’ m | I, m)
€

+ I:éi [, m+1|e, m+ D), m
€

I, m)
2,y d
—e(l,m+1|e,m+1>d—<e,m|l,m>
€

+2m=Dell',m +1|e,m+ 1)yle,m

{, m):rO
0

( [a—m0+m+nr

= |ede

J (—m}(I' +m+1)
X', m+1|em+ e, m+1

+ surface terms.

Lm+ 1)

One can easily verify that the surface terms drop out.
Setting § = 1 in Eq. (24), one sees that

fe del, 1] e, (e, 1

L1 =6y,

Hence, by the use of mathematical induction,

J‘e dell', m | e, myle, m |, my =&,

as required.
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Configuration-Space Approach to the Four-Particle Problem
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The configuration-space approach to the three-particle problem is generalized to the case of four
particles. Special coordinates are defined which have simple symmetry properties with respect to the
exchange of identical particles. The construction of a suitable orthogonal system is discussed. Some of
these functions are given explicitly. It is pointed out that the use of this orthogonal system leads to a
considerable simplification for a large number of four-particle problems, namely, the approximate
reduction of the Schrédinger equation to a finite system of coupled differential equations for functions

that depend on one variable only.

1. INTRODUCTION

The approach to the quantum-mechanical four-body
problem represented in this paper is a generalization
of an approach to the quantum-mechanical three-body
problem discussed in earlier publications.!~3 As the
situation for the three-body problem is much more
transparent, the main points of those earlier publica-
tions are discussed shortly in this introduction.

It is well known that the Schrddinger equation for
the quantum-mechanical three-body problem can be
reduced by separating the total orbital angular
momentum.?*> One obtains a system of coupled
differential equations for functions depending on
three internal variables only. For three identical par-
ticles there is a most suitable choice of these internal
coordinates!'¢ exhibiting simple symmetry properties
with respect to the exchange of particles. They can
also be used for nonidentical particles (for example,
the ground state of the Helium atom?), but they seem
to be most powerful in the case of three identical
particles.t-2:78 Therefore the discussion is restricted to
this case. The whole transformation of the original
Schrédinger equation in the center-of-mass system
to the new coordinates can be done the following way
(showing the properties of the coordinates mentioned
above):

In terms of the vectors

X, =Ty —1Tp,

B — 3, + 1), M

where ry, 1, I; are the space vectors of the three
particles, the Schrodinger equation in the center-of-

Xo

1 W. Zickendraht, Proc. Nat. Acad. Sci. U.S. 52, 1565 (1964).

2 W. Zickendraht, Ann. Phys. (N.Y.) 35, 18 (1965).

3 W. Zickendraht, Phys. Rev. 159, 1448 (1967).

4 G. Derrick and J. M. Blatt, Nucl. Phys. 8, 310 (1958).

5 H. Diehl, S. Fliigge, U. Schrider, A. Volkel, and A. Weiguny,
Z. Physik 162, 1 (1961).

8 A. J. Dragt, J. Math. Phys. 6, 533 (1965).

? W. Zickendraht and H. Stenschke, Phys. Letters 17, 243 (1965).

8 W. Zickendraht, Z. Physik 200, 194 (1967).

30

mass system contains the sum of the two A operators

Ay + A, @
A so-called kinematic rotation® is now performed.
Y1 = X; COs ¥ + X, sin p,
¥, = —X;siny 4+ X, cos y. 3

Equation (2) would be invariant under this rotation
if y were not dependent on x; and x,. In our case y
depends on x, and X,. It is chosen in such a way that
y1 and y, are perpendicular to each other. It can be
shown that the directions of y, and y, coincide with
the principal axis of the moment of inertia in the plane
of the three particles. Three external coordinates are
defined now by the Euler angles y, &, ¢ of the three
axes yi, ¥, and y; x y, in the center-of-mass system.
The separation of the orbital angular momentum
mentioned above means separation of the dependence
of the wavefunction on ¢, 4, ¢. A possible set for the
internal coordinates is

Yis Yo - Q)
In the preceding publications,»*78 y, «, f were
chosen instead with the following properties.
y1 = ysin («/2),
¥, =y cos (a/2),
B=m/2 — 2.
B is the only coordinate which is changed when two
identical particles are exchanged. With the use of these
special coordinates it was possible, for example, to
compute the ground states of three inert gas atoms
interacting by van der Waals forces.” This calculation
was done to a high precision after Ref. 7 was pub-
lished.1°
In many cases a further reduction of the Schrédinger
equation can be accomplished by expanding the wave-
function as a series of the eigenfunctions of the

(&)

*F.T. Smith, Phys. Rev. 120, 1058 (1960).
10 H, Stenschke, Diplomarbeit, Technische Hochschule Karlsruhe
(unpublished).
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operator 2 5 5o
sl o
The eigenfunctions of (6) have the form?
2 ef (@) Dlirx(p: 0, y) @
and they belofg to eigenvalues
—4i(2 + 2). ®

The coefficients of the expansion are functions
hL*(y) for which one obtains an infinite coupled system
of differential equations. In these equations, terms like
—4A(4 + 2)/y? occur which resemble the centrifugal
term in the two-body problem. As a consequence one
can expect that only functions with low values of 4
are of importance. Thus one can break the series off
after a few values of A. Then one has only a finite
number of functions 4Z* and the same number of
coupled differential equations. The validity of this
approximation depends, of course, also on the inter-
action between the particles and it has to be tested for
every application. So far arguments have been given
for good convergence in the nuclear three-body
problem!'3 provided the interaction has no hard core,
but rather a soft core.r® This means strong repulsive
but finite forces for small distances. In the case of a
hard core it is very difficult to express the boundary
condition (vanishing of the wavefunction at the hard-
core radius) in terms of the three-body coordinates
¥, a, p. The same is true for the four-particle coordi-
nates defined in this paper, the method does not
work for hard-core interactions.

The three-particle method has been successful in
describing the state of three « particles from the decay
of 2C8

2. DEFINITION OF FOUR-PARTICLE
COORDINATES

The coordinates for the quantum-mechanical four-
body problem defined in this section enable us to con-
struct a simple orthogonal system of functions for
four particles. The possibility of such a simple repre-
sentation of four-particle states was pointed out also
by Lévy-Leblond.!! He used group-theoretical argu-
ments.

To define the four-particle coordinates we again
start from the Schrdédinger equation in the center-of-
mass system in its ordinary form. A convenient choice
for the vectors in this system are

X =30 + 1 —1— 1y,
X =4(—r+1r,—13+1,), 9
X3 = §(—r; + 13+ 13 — 1)

1 J, M. Lévy-Leblond, J. Math. Phys. 7, 2217 (1966).

The vectors r; are, again, the space vectors of the
four particles. The Schrédinger equation contains the
sum

(F22m) (A, + A, + Ay). (10)

Here m is the mass of the particles. [All masses are
again equal. The generalization to nonidentical masses
is no problem.? The definition of the vectors in (9)
changes somewhat then.]

We now perform a kinematic rotation

3
Y =2 duXe, i=1,23. (11)
k=1

Here the a,, form an orthogonal matrix. Such a three-
dimensional orthogonal matrix can be represented by
three Euler angles. The g, are simple functions of
these Euler angles which are called «, §, y. It is now
required that the vectors y; are perpendicular to each
other. It can be shown easily again that their directions
coincide with the directions of the three principal axes
of the moment of inertia. Instead of the vectors x,,
X,, X3, the following nine coordinates are now chosen
to describe the four-particle system:

(&) Three “external” Euler angles v, ¢, @ which
describe the positions of the three axes y;, Ya, ¥; in
the center-of-mass system.

(b) Three “internal” Euler angles «, 8, v. As stated
above, they are chosen such as to make y;, ¥s, ¥s
perpendicular vectors. Hence they are functions of
the original vectors x,, X,, X;.

(c) The three lengths yy, y,, ys.

The moments of inertia of the four-particle system are
proportional to y§ + y2, y3 4+ y2, and yZ 4 2.
3. TRANSFORMATION OF THE SCHRODINGER
EQUATION

The transformation of the Schrédinger equation to
the new coordinates is facilitated by introducing, at
first, complex variables ¢} instead of the vectors x;.
These coordinates ¢} are defined in the following way:

f = (xu + iXgy + iX1p — Xp9)f2,
fo= —(x5 + ix23)/2%,

Ly = (=X — ixy + iX;y — X29)/2,
1(1) = —(x3 + ix32)/2%,
fo = X33,

131 = (X3 — ix32)/2%,

tl_l = (—Xy1 + iXy — iX35 — Xs3)/2,

ot = (xy — ix23)/2%,

1 . :
15 = (X113 — Xy — iX1p — X29)/2

u2)
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(components of the vector x; are called x;;, X;2, Xs3).
With these variables, the sum of the three A operators
has the form

A+ A+ A —Z 2( — ) ——

j=—1k=—1

02
orior_ _’“
The relation between ¢} and the new coordinates
introduced in Sec. 2 is very simple now,

(13)

2 Z Daal(o' B, V)an(% 3, @)t} (14)

p=—1 g=—
The relations between (¢2)" and y; , ¥z, ¥; are the same
as between #F and x,, X,, X3. The directions of y,,
¥z. ¥s are perpendicular to each other and form the
coordinate system to which the (¢2)' are referred.
Thus,

(1) = () = 01 — »),
(tl—l)’ = (t1—1)l = —3(y + yo)s
(tg)’ = Y3,
() = (@) = (@) = (") =0.
The transformation of (13) to the new coordinates
is discussed in the Appendix. The result is
B+ Ay + By

2 0
—i-l' )’1( L s+ L )—
1

(15)

oy Yi—yi yi—y/on
Gk 1 1 ?
+ =+ 2y ( + )—-
oy: R -yt -y,
o° 1 1 0
+—+2 ( + )—
0y; A R I
+
—ﬁi%uﬂ+%)(%;%@-ub
3
_ Vit (L3 + L) — AaVs g
i — »)? 0y
4 4
- (2 }_)f).)lz)z i2e2 T 0}2_}:?)"53)_2 LisLes. (16)
3 1

In Eq. (16), the operators L,;, L., L, are the com-
ponents of the total orbital angular momentum with
respect to the body-fixed coordinate system whose
axes coincide with the directions of y,, ¥,, ¥3.

: 0
L,= lhI:COS w(sin 193_<p — cot 0%) — sin y)a—?}
L, = —ih[sin ( 9 _ cot 19-——) + cos i]
* Ysin 9 99 oy a5
L= —zh—a— . (17
oy

The expressions for L, L, L; are completely

analogous to (17), where v, &, ¢ are replaced simply
by o, /3’ v

4. CONSTRUCTION OF A SUITABLE ORTHOG-
ONAL SYSTEM FOR THE FOUR-PARTICLE
PROBLEM

The Schrodinger equation of the four-particle system
can always be reduced by separating the orbitalangular
momentum. If only central interactions are assumed,
the eigenfunctions of the Schroédinger equation can be
chosen to be eigenfunctions of L2 and L,, also. (L,, is
the z component of L, .) In this case the wavefunction
is a sum over DL, (v, 9, ¢). It is summed over K,

the coefficients of DL, depend on y, ys, ys, «, 8, ¥.

Similarly as for the three-body problem one proceeds
now by expanding the wavefunction as a series over
eigenfunctions of suitable operators. These operators
are

1.2
L= —in (18)
dy
which is analogous to L,,,
2
M=y{mf+m+Ag—9;—§3}<w)
oy* yoy

where
y =0+ 53+ <31 = b + 05+ ik

The five operators L2, L,,, L2, L,, A? form a set
of commutable operators There are of course four
more operators, which could be constructed, that are
commutable with each other and the five operators
above. One of these could be taken as 0%/dy? +
(8/y)0/0y, for example. The remaining three operators
are complicated and it is not useful to derive them. It
is probably easier to construct eigenfunctions for the
above five operators only. They depend on eight
dimensionless variables (the only length is y) and in
the general case one finds several independent eigen-
functions for fixed eigenvalues of L2, L, , LZ, L;, A%
These eigenfunctions have to be orthogonahzed
When expanding the solution of the Schrodinger
equation as a series over these functions, the coeffi-
cients depend on y and they contain all the informa-
tion about the interaction of the particles. It might be
useful in some cases to expand these y-dependent
parts also in a complete orthogonal system, but this
point is not discussed here. Why is it convenient to
choose the above five operators for constructing an
orthogonal system? This is discussed shortly. The
quantum numbers for the orbital angular momentum
and its z component are called L, and M, and in
complete analogy L, and M, for the operators L? and
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L, . For the moment it is assumed that the interaction
of the four particles depends only on y. This would be
the case, for instance, for oscillatory interactions of
equal strength between all particle pairs. But such
an interaction is far from reality and it is used for the
moment only to show the convenience of the opera-
tors chosen. The arguments are correct also for other
interaction as will be seen.
The operator A? has the following form:

M=£Fi+@ﬁhi ! f}
x| 092 sin B, 09, sin® 9, 0¢d
yireé®  cosd, 0 1 :I
e =
+ ﬁ[ﬁz_ + €08 Vs By ._a__ 1 _ai]
x51.00%  sindy 09, sin® 0, 0g;
0° cos x siny\ 0
+ =+ {5~ —-2—L)-
oy* ( sin g cos X) oy
o* cos2é 0
b L g8 0 20
o0& sin 2§ ¢ (20)

The polar angles of the vector x; are &, ¢r;
Py, @y and P, @, are the same for x, and x4, respec-
tively, and

Xy = ysin x cos &,
Xy = ysin xsin &, (0A})]

Xy = Jy COS .

The eigenfunctions for A* are

Yl;ml(ﬁ1%)Y}gmg(ﬁzq’z)yzama(ﬁa()gﬂ
{(cos &)1i(sin &)
X F(=300 — I, = 1), 300 + L + L + 4);
—1, — 3;cos% &)
(cos y)"(sin x)"
X F(=3A - =), 4 + I + v + 7);
~ly — §;c08’y), (22)
v—1[, —1,>0 andeven,
A~1Iy—~v >0 andeven.

The solution of the Schrédinger equation for a y-
dependent interaction V(y) is Eq. (22) multiplied by

a factor A;(y). For h;(y) one obtains the equation
h2 82
{5—7;[6_‘;5 t ydy e }'}' E - V(Y)}hl(y) = 0.
(23)

The term A(4 + 7)/y* has the same effect as the
centrifugal term in the ordinary two-body problem.
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The ground state has 4 = 0; states with larger values
of A are higher in energy. For arbitrary interactions,
{(23) is replaced by an infinite system of coupled
differential equations for y-dependent functions, but
centrifugal terms A(2 + 7)/y? occur in all these equa-
tions and they have the same effect in many cases as
for the simple case above. For the total wavefunction
of the four-particle system this means, then, that only
low values of A are important. Thus one may ignore
the higher values of 2, that is, one may break off the
series for the total wavefunction and one has only a
few coupled differential equations. As in the case of
the three-body problem, one has to, of course, test
whether this approximation is good or not. There are
interactions for which one cannot use it, for example,
inert-gas atoms interacting according to van der
Waals forces.”

The eigenfunctions for A? in the form (22) are not
suitable for calculations with four-identical particles.
The separation of the orbital angular momentum is
difficult and the functions (22) have complicated
properties with respect to exchange of identical
particles. Therefore the eigenfunctions of A% con-
structed below are eigenfunctions to 1.2, L, L, L .
They have the form

FA,LZ,JIe,LiJIi(“a B v, 0, B @ ul, Vol ¥)

m i i oy
= Z D;{EME(% D, 99)DII§'W111-(°‘, B, }’)zGie,IKe ("1 > ”g)
K.K; y oy

24

(with K, + K, even, as is shown below).

The main problem consists in finding the functions
JGE: . This can be done by transforming (22) to the
new coordinates and writing it as a sum over functions
(24). One property of (24) can be derived without
further calculation. The eigenfunctions of A% can be
written in terms of t¥/y, where the ¥ are defined as in
(12) and y as in (19). They are sums over products of
the ¢}/y. The transformation of ¢} to the new coordi-
nates is given by (14). Only terms with p 4+ g even
contribute to the sum in (14) as is seen from (15).
Replacing t} in the eigenfunctions of A2 by (14) and
using the well-known formula for the multiplication
of the rotation matrices, one can conclude immediately
that K, 4+ K, in (24) must be even also.

When one has constructed the functions AG,{:‘%;‘
from (22), one can check on their correctness by
placing them in the coupled system of differential
equations to which they belong. It is obtained from

A + A0 + DIFs a0, =0 (25)
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and has the following form:
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o° 1 1 0 o° 1 1 d o? 1 1 d
+ y( + )—-+—+2y2( )_— 2 Zy( + )———
{82 -0ty - oy 0y R e L - e U R S B T
b 2 2 2
+ Vi Y3+ i
— HLAL, + 1) 4 L(L; + 1) — K® — Kf][ Y2 ]
’ ’ O — ¥ (= y2)
2 2
— y21+y222(K§+K§)__ 24y1y222 eKz+’1(}'+7)} GLZ: %
1 — yd) (vi — y3) y
1 2 + 2 + y . .
Z[ (;;g_ ;%2 - (;g yg){l glfzﬁ-zg‘;}eu lGLg,K,+2 + g——K3+2g—— o1 }.GL,,,Ke-—z

L; L L ,K i+2 Ly
+ 2K 28K1.0 0k, + 8k ,+2g——K,+1 AGL,; =

YaV1
(J’g - ¥

Ys¥1
3=y

Ya¥s
+ [ -
;- )’
Yo¥s
+|
(s — »d*

Ly,
> 2][8K,+18Kg+uG K

i L,
2 2] [gKi+1g—K¢+1 AGLe,K,,-—l

K1
P g-k +1g-

K1
K1 AGL, K1

L, K1

i3 3 i‘K'["'
+ g5 8K GLig Tl (26)

with gk = [(L + K)(L — K + D} (it was multiplied by 1/y* and the operator 0%/dy* + (8/y)9/dy was
included. This does not matter, because there is no y dependence in the functions considered).
The eigenfunctions have been derived for A = 0, 1, 2. The result is given below; the functions are not

normalized:
A=0, L,=L,=0,
A=1, L,=L,=1,
A=2 L,=0, L, =2,
L,=2 L;=0,
L,=L,=2,
L,=L,=2,

These functions are complete up to A == 2 as one
can find simply by counting. It is remarkable that one
finds a single eigenfunction only for fixed values of
A L, L;y M,, M;. As there are three more* operators
commutable with A%, L,, L;, L,,, L;;, one would
expect more than one eigenfunction. But this is the
case only for higher values of 4 just as in the case of
three particles.?

Goo =1, 27
1118 (tK,)'/Ys (28)
2Goo =G5 = () — yDlV%
Goo = (295 — y1 — H®H™* (29)
G, = ,GIK, (30)
2G5 = 2G5 = (3, — »)*/¥",
262y = Gi7° = (y1 + y2) P
2633 = 2622 262—2 262-2
= (% — DR @3n
2GR = 26371 = 2y4(y1 — y)V%,
Gt = 1G2_1 = —2ys(»; + Y%
oG = (4y3 + ¥} + yD3y%,
2Go = G371 = ¥y — y/V%
2631y = 3G3t = s + ¥/,
2G3o = —2y;y,/¥" (32)

5. PARITY AND SYMMETRY PROPERTIES

In this section parity and symmetry properties of the
four-particle functions are discussed without further
proof.

The parity operation means that ¢f is replaced by
—t¥. In the new coordinates this replacement corre-
sponds to replacing y; by —y, while , 8, y, v, &, @
are unchanged.
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The exchange of identical particles can be represented
in the new coordinates by the reflection of y,(y; — —»:)
plus a kinematic rotation. This is illustrated for the
exchange of particles 1 and 2. This exchange means
that the vectors X;, X,, Xz of (9) are transformed to
vectors X;, X, X, with

X; = Xy,
Xy = —Xg, (33)
X; = —X,.

For ¢} of (12) this means a transformation to 7§ with
iy =2 and}. (34
i

The matrix a; can be derived from (33) and the
definitions of the ¢} from (12):

ap=a11= —&@ ;= —ad 11 = 12,
Ay =4d_1p = —0p = —Qyp1 = 1/2% (35
aoo = 0,

In the new coordinates the exchange alters «, f, y to
o, B,y and (£2) to (¢2)", while p, &, g are unchanged.
That means that

i = 2 Dy, B, y)Def(w, B, )13)'.  (36)

For (¢%)" one ﬁnds
()" = —(2)" (37)

Thus,

;= —2 Do, B/, ¥)Dg (v, &, @)(13Y.  (38)
Equations (34) and (38) give
> a2 Dyl B, YDy, B, @)t3)
T = 3 DREL LD B e ()

Hence,

Eaikz D} (o, B, yXt3) = —E D(ed, B/, y'NtY).

(40)
In Eq. (40), q is fixed. The (¢2) for different values of
p are independent. Thus,

Z ag Dy, B, y) = — Dy, B, 7). 4n
From (35) and the formulas for D}, ,'? one finds
. ayg= —Djfas, B> v1)s (42)
with
o =3%m, fi=1im, y, =43 (43)

Equation (41) is now
Dy, B, 9') = 2 Dji(21» b1 70 D3ile, B, ) (44)

and represents a kmematlc rotation, that is, a rotation

12 G. Breit, “Theory of Resonance Reactions and Allied Topics”
in Handbuch der Physik, Vol. XLI, Part 1, S. Fligge, Ed. (Springer-

Verlag, Berlin, 1959).

in the a, 8, y space. Thus it was confirmed that the
exchange of particles 1 and 2 means reflection of y;
[Eq. (37)] and a kinematic rotation [(43) and (44)].
For the other exchanges, one finds

1 2: a =37, pi=14n, yn=4in,

3o 4 o =im, f=1m, y1=1im,

3o 1: w0, =0, pi=3%r, yhy=m, 45)
24 oo =m, pi=37, =0,

1< 4: o, =3%m, fi=m 9y =0,

2> 3: =3, f=7, n=

(For completeness, exchange 1 < 2 is also included.)

As in the case of three particles,? one can choose a
representation of the orthogonal system in which
every function has definite symmetry properties for
one exchange, for example, the exchange of particles
1 and 2. Every function of the system is either sym-
metric or antisymmetric with respect to this exchange.
In general, these functions exhibit a complicated
behavior with respect to any other exchange. There
are only a few functions which exhibit the same
behavior with respect to any of the exchanges, that is,
completely symmetric or completely antisymmetric
functions. To construct such functions one has to take

combinations
2 baFar oo, (46)

of the functions defined in (24). The coefficients b,,,
are determined from the requirement that (46) is
either invariant under all particle exchanges or that
it changes sign under all exchanges. Completely
symmetric space functions would be needed in the
case of four bosons, e.g., four « particles. The lowest
values of L, for which one finds such functions are
L, =0, 4, 6. For completely antisymmetric functions
one finds L; =4, 6. They would be needed in the
case of four nucleons. But other space functions are
needed in that case, too, because they have to be
combined with spin-isospin functions to form com-
pletely antisymmetric functions. It is not the purpose
of this paper to discuss these functions.

6. REDUCTION OF THE SCHRODINGER
EQUATION FOR FOUR PARTICLES
WITH CENTRAL INTERACTIONS

The solutions of the Schrddinger equation for
four particles with central interactions are eigenfunc-

tions of the orbital angular-momentum operators L2
and L,,:

0 i +L;
V=3 2 oo (47)
o Lo Mi=-L;

If, as we assume, only a few values of 4 bring a con-
siderable contribution, the sum over A can be broken
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off and V' is replaced by the approximate function\¥',:

Am A +L;

\P‘a = z z Z hl,Li,Mi(y)Fl,Le,Iﬂe,L“in . (48)
i=0 L;=0 M;=—L;

Equation (48) is put into the Schrddinger equation
which is multiplied by F;. ; 7 ;. 3, - The integraton
over the eight angular coordinates is carried out
yielding a coupled system of differential equations for
the functions #; ; ;. . The matrix elements containing
the interaction can be simplified considerably. The
matrix element

(49)

is considered as an example. The distance of particles
1 and 2 in (49) is r,,. With respect to the vectors,

Z, = [r, — 3(r, + 1, + )R,
Z, = [rs — 3(r; + rz)](%)%,
Zy= (1, — 1,275
The Schrodinger equation contains again the sum
of the three A operators A; 4 A, 4+ A;. Introducing
as new coordinates the polar angles 9, ¢;, &, ¢;,
Oy, @, of the vector Z,, Z,, Zs, respectively, and
¥, %', & with

Farom,pomd Vi) |Faop, o, 000,

(50)

Z, = ysin y' cos &',
Z, = ysin y'sin &,
Zy=ycosy,

(1)

one can again construct a complete orthogonal system
in the angular coordinates which has exactly the same
form as (22) except that all the angles have to get
primes. (A4 has the same meaning as throughout the
whole paper.)

The functions F, ; i ;. 3, are linear combina-
tions of these orthogonal functions. The interaction
V(rys) depends on y cos x” only and thus seven of the
eight integrations can be carried out without difficulty.

APPENDIX

To transform (10) to the new coordinates, the deriv-
atives of the new coordinates with respect to ¢ are
needed. To obtain these, the derivative of Eq. (14)
with respect to ¢% is formed,

. O 0 .0 .. 0
05 0m = 2”:11787 + lka‘},% + l(I'a‘:%, + ij 8_:2_}
X Dy (aBy) Dy (wd)(tey
? ap
Pl Dl D1~ So) —= (1%
+ [ 57 DB |Dityoe) S
d ad
D! — DY (wd) |— (7Y
+ pkwﬁw[a - Dl a»)] 25
1 1 o(ty)
+ DDy T2 (A1)

Multiplication of (A1) with DL¥%(«, 8, y)DX(y, &, ¢)
and summation over k and j yields

D?;c’(“’ B, V)D}I’t"("p’ 4, ¢)
o0, 303y

pois Ll
ol

i, O .
=iy 2% 4 gy -
o) at?, ‘I(q) Bt’;

F . N
+ a—;, Z% ik D3, B, V)DL, B, p)(t0)
i ?

J

a .. N
+ # > Y iiDg(w, ¥, @)Dy, 9, @)t}
i ¢

98 1% 0
+ o 22 Dy b, y)[aﬁ

33 D 0. 0) [% Didy. #, 9]
(A2)

Diy(a, B, y)}(tzf)'

9

+ 5
or.

2

These nine equations for the derivatives with respect
to t% can be simplified considerably by putting in the
known forms of the rotation matrices. The coefficients
of do/0tk, dy[0tE can be taken from (15) directly.
The coefficients of dy[otk, d¢dt/k, opjotk, ad/otk
in (A2) are called T .., ®,., B,,, O, respec-
tively. One finds

Ty, =T%, = [i(ys — ya) cos B2,
Ty, = =%, = —ie™sin By,/2%,
Iy =T% = —[i(y; + ys) cos f]/2,
1_‘01 = "F:—1
= isin fl—(y, — ¥ + (yy + yo)e 24

Ty =0; (A3)

®y, = O*_, = [i(y, — y,) cos #]/2,
D, = —0*,,
= isin 9[—(y, — ye¥ + (3 + yoe¥124,
O, , = ®*, = [i(y, + y2) cos 9]/2,
Dy, = —D¥ | = —ie ¥ sin 9y,/2%,

@y = 0; (A4)

By,=B,,=By=B,1=B,,=0,

By = —B%, = _,V3e_ia/2?1£a

By, = _33—1 = [(y, — Y2)eia + O+ )’2)9—_”]/2%;
(A5)

@11 = ®1—1 = ®00 =0, = ®—1—1 =0, 3
O = — 0y = [y, — yo)e™ + (1 + y1)e /2%,
—@5“_1 = _y3e——iw/2§. (A6)

&
[
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Equation (A2) can be solved now. The results are

aa(ﬁ,‘i) = Dyfi(e, B, VIDGI(y, 9, ), (A7)
T = A0 B D, 0. 9)
+ DMi(e, B, ¥)D (v, 9, 9)l, (A8)
a—(a%;l = 3Dy, B, ¥)DI1,(w, 9, ¢)
+ DINp(e, B, MDAy, 9, )], (A9)
g; 2% sin 033 — »H0OE — )

= yaD(e, B, Y){DiY(w, 9, @)le™(yi — y))
+ (i + yi — 2yD] + DX (v, D, @)
x [¢¥(y: — y3) + 7 + yi — 2991}
+ D3 (e, B, IDI(y, 9, @)
X {(y1 + y)le(F — ¥ + €07 + ¥i — 23D)]
— (y1 = ye™Oi — ¥D + V0T + i — 23D}
+ 1DMu(e, B, VIDGH(w, D, @)
X {“()’1 - YZ)[e—iw(YL - .Vz) + ew()ﬁ + ,VZ - 2y3)]
+ (O + yz)[ei'”(yf - J’2) + e_zw(h + yz - 2)’3)]}-

(A10)

For (98/0:%)28(y2 — y2)(y2 — y?), one obtains an
expression which i 1s almost the same as the right-hand
side in Eq. (A10). The only change consists in a
change of sign of ¢¥; e~ has the same sign as in
Eq. (A10):

ZT"’ —~ —cos ﬁg—k — i[D}(s, B, MDLw, 9, 9)
- Dllk (o, B, 7) S, 9, @1/2(p, — po)
— i[Di¥e, B, V)DL (y, &, ¢)
— DI} (e B, V)D T, 9, N2 + yo).
(A1)

The expressions for 0y[dtX, 0p[otk, dufots are

obtained from the expressions for d¢/0ts, 09/0ck,
Oy/0t¥ by exchanging
(% B, )= (, D, 9)s
K. (A12)

To transform the Schrodinger equation to the new
coordinates, extensive use is made of ihe properties
of the rotation matrices. The first step of this trans-
formation is illustrated. The new coordinates are
called v, now:

(Ula Y Ug) = (tga ti’ t1—15“’ :8’ Vs s 9, ‘P) (A13)

The expressions for the first derivatives derived in
this appendix can be written as

at" =Y 3 Dyl B, Y)Dy3(w, 9, p)al,. (Al4)

The 4}, do not depend on «, §, v, , ¢, ¢. Thus one
obtams for (13):

i+k
z =) az‘at-’c

=23 2 (=)Di(a, B, »)DNwp, 9, p)al,

ik minp m'n’p’

o
[% DY (@, §, y) D1

d
, D, @)an., .
v play avm:|

(A15)

of the second derivatives
= 10 the transformed Schrédinger equation

The coeflicients f,,,.-
0%/ 0v,,0v
are then

mm - zz Z( )j+kD (O( /9 y)Dl*(W5 19 ‘P)

ik np n'p’

X Dl* k(rx /3 ’}/)Dl* ,(1/), ?9 (p)anp np(z
=@ = 0uw) 2 (=)"agal, .

The final result of the transformation is given in Eq.

(16).

mm’)

(A16)
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By means of contour integrals involving arbitrary analytic functions, general solutions of the zero-rest-
mass field equations in flat space-time can be generated for each spin. If the contour surrounds only a
simple (respectively, low-order) pole of the function, the resulting field is null (respectively, algebraically

special).

1. THE CONTOUR INTEGRAL

It is possible to generate a very wide class of solu-
tions to the zero-rest-mass field equations for each
spin, s = 0,4,1,%,2, - -, in flat space-time by means
of a certain contour-integral expression. By choosing
the integrand and contour suitably, the resulting field
can be made to have certain prescribed properties,
e.g., it may be made null or algebraically special.
The expression arises naturally in the theory of
twistors,! but the result can be given quite readily
without using twistors. The present note gives the
main results without going into the general theory.

Let x°, x!, x2, x® be standard Minkowskian co-
ordinates and set

u=2Hx"+ x1), v=2%x"—

L =2%(x2 + ix®), (1.1)

so that the metric becomes ds? = 2du dv — 2d{ d{.
Letfbe ananalytic function of three complex variables.

Choose a nonnegative integer 2s and, for r =0,
1,---,2s, put

¢__

where the contour surrounds (but does not encounter)
singularities of f and varies continuously with u, v,
and {. Then we have

x1),

Mf(A,u + AL, L + Av) dA, (1.2)

%_%_l,jz=a¢r+l, =0, - ,2s — 1,
ol ou Ov o
(if s > 0) and (1-3)
o? 22
= , = 0, ety 2 . 14
{auau agac;¢’ ’ w18

Equations (1.4) is simply the wave equation in the
coordinates (1.1) while Eqs. (1.3) are the spin-s zero-
rest-mass equations in a suitable notation. For if we
put

‘f’o 4’000 ¢1=¢100~--o ¢2=¢no--~o, ‘s

4’23 = ¢111-~~ (1.5)

x has 2s indices and is symmetric:

<0 s
1>
where ¢ABC"'

1 R. Penrose, J. Math. Phys. 8, 345 (1967).
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bup--.

K = $wup. .. x); then Egs. (1.3) can be written

9 (1.6)

0x 4pr

(summation convention assumed), where the 2-spinor

notation xoy = v, xg;r = —, X0 = —{,and x;3, = u

is being used. Equation (1.6) is simply the Dirac—

Fierz spinor equation®?® for mass zero and spin s.
If s = 1, we can put

¢ABC-~~K=0

¢0 —_ %(F12 . F02 - iF13 + I'F03),
¢y = H(F — iF®),
952 — %(Flz + Fo2 + jF13 + iF03),
and Egs. (1.3) become Maxwell’s equations
0 Lm 0 0 d
— =0, —F,, + — —F, =0.
ox°® ox* " ox? 6 ol

Similarly, for s = 2, we can get the linearized Einstein
equations in gauge-invariant (“curvature-tensor’)
form.3-4:5

2. NULL AND ALGEBRAICALLY SPECIAL
FIELDS

Suppose the contour in (1.2) surrounds only a
k-order pole of the function f. Let A = # be the pole
for given u, v, { (so 7 is a function of u, v, {, {). Then

3{;(/1 — (A i+ AL, L+ Av)dA = 0.

Thus, if 25 > k,
brir — kb + Fk(k — 1)¢r+k—27]2 -
+¢(—mF=0, r=0,---,25—k (1)

[see (1.2)]. We can rewrite Eqs. (2.1), using the nota-
tion (L.5), as

bup...pr.. gEEP - EP =0, (2.2)
where A, B, - -+, D are k in number and where
O =—y, &=1 2.3)

2 P. A. M. Dirac, Proc. Roy. Soc. (London) A155, 447 (1936).

3 M. Fierz, Helv. Phys. Acta 13, 45 (1940); M. Fierz and W.
Pauli, Proc. Roy. Soc. (London) A173, 211 (1939).

4 R. K. Sachs and P. G. Bergmann, Phys. Rev. 112, 674 (1958).

5 R. Penrose, Proc. Roy. Soc. (London) A284, 159 (1965); Ann.
Phys. (N.Y.) 10, 171 (1960).
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Equation (2.2) is, in fact, precisely the condition for
a spinor &4 to represent a (2s — k + 1)-fold principal
null direction® for the field ¢ ;5 ... . Thus, whenk =1,
so that the contour surrounds only a simple pole of
/, all 2s principal null directions coincide in the
direction of &4 so that we get a null field® [In the
Maxwell case this means F,,F® = 0 = F,,F,;e"
i.e., dopy = (¢,)2] More generally, whenever k < 2s
at least two principal null directions coincide (in the
direction of &4), that is to say, the field is algebraically
special. (Such fields, when s = 2, are of interest in
gravitation theory.®7)

The direction of &4 is given by the vector translation
EAEB je., by

du:dl:dl:dv = §FV: 05 £1EY pf
= nij:—n:—7: L
Thus # defines the null direction® given by
du+ ndl =0=d{+ ndv. (2.4

It is known®~7-® that the multiple principal null direc-
tion of an algebraically special field is tangential to a
shear-free congruence of null geodesics (here, straight
lines). In the above case, this follows also by a theorem
of Kerr! which states that such a congruence is defined
by (2.4) if we specify an analytic relation connecting 7,
u+ 5, and { + nv. In the present situation, the
analytic equation {f(A4,u + A, L + Av)} ' =0 de-
fines the poles A = # of f, verifying that the directions
(2.4) are indeed geodetic and shear free.

In addition, Kerr’s theorem states that, conversely,
any shear-free geodetic null congruence in flat space-
time (except for certain rather special limiting cases)
can be obtained from such a analytic relation. This
indicates the generality of expression (1.2) for the
construction of null fields. Robinson® showed how,
starting from any shear-free geodetic null congruence,
it is possible to construct all the corresponding null
solutions of Maxwell’s equations by the arbitrary
specification of an analytic function of two complex
variables. The integral (1.2) achieves effectively the
same thing (in flat space-time, but now for fields of
arbitrary spin s > 1). For, by Kert’s result, the given

¢ I. Robinson and A. Trautman, Proc. Roy. Soc. (London) A265,
463 (1962).

7 J.N. Goldberg and R. K. Sachs, Acta Phys. Polon. 22, 13 (1962).

8 The value 5 = oo also gives a well-defined null direction, al-
though this would not arise from the integral (1.2) as given. To
obtain null and algebraically special fields in a way sirnilar to the
above, but in which this exceptional null direction could also be
represented, we would have to transform (1.2) suitably. It is in the
transformation properties of (1.2) that the different spin values play
a role. [Equation (1.2) is curiously oblivious to the value of s here!]
The complete manifestly (conformally) covariant expression, of

which (1.2) is a particular realization, requires the use of twistors.
* I. Robinson, J. Math. Phys. 2, 290 (1960).

shear-free congruence can (normally) be defined by
(2.4) subject to h(n, u + n&, { + nv) = 0, where h
is some analytic function with simple zeros. Into the
integrand of (1.2) we can substitute /' = gh™!, where g
is an analytic function regular at the (relevant) zeros
of h. The freedom of choice for the residues in (1.2)
at the poles of fis, & being given, simply the freedom
in the choice of g at & = 0. This is essentially one
complex function of two complex variables (h = 0
being a two-complex-dimensional set) in agreement
with Robinson’s result.

Indeed, we can go somewhat further since alge-
braically special fields can also be treated by the
method given here. For example, if s = 2, an expres-
sion gh™? yields, when substituted into (1.2), a general
type of algebraically special linearized gravitational
field. (Here it is the values of g and its first and second
derivatives, at h = 0, which are relevant.) We can
also consider the slightly more general fields given
when k = 2s in (1.2). The directions (2.4) are evidently
(by Kerr’s theorem) still geodetic and shear free but
they are now just simple principal null directions and
the field is not algebraically special. Since, for a
general field, the principal null directions are neither
shear free nor geodetic, it follows that the fields given
by k = 25 in (1.2) are still of a rather special type.
(The case k = 25 = 1 defines what we might tenta-
tively call a “null neutrino field.”) However, more
general fields are generated if the contour surrounds a
pole of higher order than 2s [for then (2.4) will not
even be a principal null direction of the field], or
more than one pole of f (in which case the resulting
field will be a finite linear combination of fields of the
type we have just been considering), or singularities
or singular regions of more complicated types.

It is not hard to construct a function f for most of
the simple types of fields normally encountered (e.g.,
plane waves, monopole, or multipole solutions, etc.).
Also, provided the contour can be chosen consistently,
we can obtain linear combinations of such fields in the
form (1.2) simply by taking the corresponding
linear combinations of f’s. This process may fail if
too extensive (continuous) linear combinations of
Sf’s are taken, since the resulting singularities may
leave no room for the contour. Nevertheless, it is
evident that there is considerable generality in the
expression (1.2).

The full discussion of (1.2) and of its transformation
properties is best carried out in terms of twistors.?
The twistor description will be given elsewhere.1?

19 Note Added in Proof. Due to the delay in the publishing of this
paper, this description has already appeared; see R. Penrose, Intern.
J. Theoret. Phys. 1, 61 (1968).
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Using a method suggested by Montroll, we extend the well-known matrix formulation of the nearest-
neighbor one-dimensional Ising problem to allow for interactions with an arbitrary finite range n,
general spin /, and an applied magnetic field B. We exhibit the relevant matrix element explicitly and
hence formally obtain the partition function via an eigenvalue problem of order (2/ + 1)*. For the
case B =0, / =} we introduce a change of variable which simplifies the partition function while still
allowing a matrix formulation. Using this approach we have computed specific-heat curves for infinite,
ferromagnetic Ising chains with interactions of range n (n < 7). We prove in an appendix that open and
cyclic boundary conditions are equivalent for the system under consideration.

1. INTRODUCTION

The partition function for an infinite chain of spins
was originally calculated by Ising.! Kramers and
Wannier? reformulated the problem in terms of 2 x 2
matrices. Both of these calculations are restricted
to the nearest-neighbor problem. When the inter-
action is allowed to have an arbitrary finite range, the
partition function is harder to calculate; however,
Montroll® has shown that, in principle, the matrix
approach can be applied to this more general problem.
Other exact formulations have also been given.*

The present paper is devoted in part to an explicit
matrix formulation of the many-neighbor problem,
based on Montroll’s suggestion. The nonsymmetry
of the matrices was considered an obstacle by
Montroll; this difficulty is removed by a theorem
proved in the Appendix.

In Sec. 2 we introduce a change of variable in
order to exhibit a relation between the spin-} open-
chain Ising partition functions for two distinct situa-
tions, namely,

(i) no external B field, nearest- and second-nearest-
neighbor interactions, and

(ii) external B field applied, nearest-neighbor inter-
actions only.

This relation was first demonstrated by Frankel®
in another context.

Section 3 deals with the many-neighbored chain of
arbitrary spins in-an applied B field. We explicitly

1 E, Ising, Z. Phys. 31, 253 (1925).

2 H. A. Kramers and G. H. Wannier, Phys. Rev. 60, 252 (1941).
These authors use cyclic boundary conditions leading to an ex-
pression for the partition function as the trace of a matrix.

3 E. W. Montroll, J. Chem. Phys. 10, 61 (1942). See particularly
pp. 68-70.

4 H. S. Green and J. Liepnik [Rev. Mod. Phys. 32, 129 (1960)],
have developed a ‘‘matrix-spinor” approach which has been
modified by M. E. Fisher and H. N. V. Temperley, Rev. Mod.
Phys. 32, 1029 (1960). The recursion relations they obtain may
well be suited to an exact numerical treatment of the many-neigh-
bored Ising chain.

5 N. E. Frankel and D. Rapaport (to be published).
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calculate the general element of a matrix whose
largest eigenvalue determines the partition func-
tion.

In Sec. 4 we impose the restriction B = 0, but other-
wise retain the generality of Sec. 3. The eigenvalue
problem of Sec. 3 is reduced to two eigenvalue
problems of lower order.

In Sec. 5 we restrict our attention further to the
spin-} chain (/ = }) in zero B field. The range (n) of
the interaction is still general. We reformulate the
problem in terms of the variables described in Sec. 2,
and the reduction used in Sec. 4 becomes superfluous.

In Sec. 6 we present computed values of specific
heat for the system described in Sec. 5.

In Sec. 7 we discuss other treatments of the one-
dimensional Ising problem, particularly those which
deal with infinite-ranged interactions. We attempt to
relate the results of this paper to predictions of
critical behavior given by other authors.

Finally, in the Appendix, we prove a theorem to
justify a statement made in Sec. 3. The theorem has
wider applicability, however, and it amounts to a
proof that boundary conditions do not affect the
thermodynamic behavior of infinite chains, at least
when the interactions have finite range.

2. SIMPLE TREATMENT OF THE CASE
[=L B=0,n=2

2
We consider the spin-§ chain in zero B field,
assuming that spin-spin interactions are negligible
except for nearest and second-nearest neighbors. The
partition function for a chain of length N is

(

where the coupling constants J, and J, are positive
for a ferromagnetic chain.

QN(ﬂ’ J19 JZ)

> expp

Sy=—1

N-1 N-2

J1 Z 581+ Jo 2 S:Sive
i=1 i=

1

s1=—1

), Q.1
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We define a new set of variables {#;} with possible
values £1:
to=s,
i=1,2,--+,N—1 2.2)
In the spin-4 case this transformation can be
uniquely inverted since s2 = 1 so that

b = 8815

S; = 881515282 " "

=l glie " hilo. (2.3)

Thus for each set of values {s;} there is exactly one

set {¢;} and vice versa. Hence the partition function
becomes

$28151

On(B, Jy, J2)
1 1 N—1 N—-2
=23 3 exp ﬁ(le i+ Jy D titiﬂ), (2.4
t1=-1 ty—1=—1 i=1 =1

where 5,5, = §:(5;:1)%;,2 = 1;t,11, and the factor 2
arises from the sum over ;.

Now the partition function for the spin-} nearest-
neighbor chain in a magnetic field B is given by

QN(ﬂ’ J’ B)
1 1 N N-1
=33 1exp ﬂ(,uBElsi + lesisiﬂ). (2.5
$3=—1 sy=- i= i=

Hence, from comparison of (2.4) and (2.5),

On(B,J1s Js) = 20x_4(B, J, B), (2.6)
where J = J, and uB = J,.
1st block 2nd block
[51 s2 Sn] [sn+1 sn+2 s2n]
S I R

where the second alternative is merely a convenient
relabeling of the first.

Each block has (2/ + 1)* possible configurations,
so that the configuration of the jth block can be
specified by a single integer ¢; where 1 <¢; <
(27 4+ 1)™. Because the interaction has range », a spin
in the jth block can interact only with spins in the
(j — Dth, jth, and (j 4 1)th blocks. Hence the energy
of the chain is the sum of three types of term:

(i) interaction energies with the external B field,

(ii) mutual energies of spins which are in the same
block, and

(iii) mutual energies of spins from two adjacent
blocks.

The contributions of types (i) and (ii) from the jth
block are

X = X( (G S(j) .. S(:i))
[7 e 2 ’
— —uB zls”) —zJ (215"’ fjr’k). G.1)
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Thus the second-nearest-neighbor result can be
transcribed from the well-known nearest-neighbor
result.® The relation (2.6) was first noticed by Frankel®
in another context.

The transformation (2.2) can only be used in the
spin-{ case for which the unique inverse (2.3) exists; a
further restriction is that the applied field B is zero.
However the technique is not restricted to the second-
nearest-neighbor problem and we use (2.2) in Sec. 5
in the context of long-ranged interactions.

3. GENERAL PARTITION FUNCTION

We consider the case of general spin with an external
magnetic field B.

Let each site have spin / so that the spin projection
s; can take 2/ + 1 values.

We consider an n-neighbor chain; thus the inter-

action energy of two spins is
—J.5:8;, when 0<k<n,

E(s;, $i13) = : 0, when & > n.

In order to write down the energy of the chain in
any given configuration we divide the chain into
blocks of length n and consider a chain of total length
Nn. This procedure was suggested by Montroll* who
performed the calculation explicitly for the case

I=%,nr=2,B=0.
The division is as follows:
Jjth block Nth block
[S(j—l)n+1 sjn] [S(N—l)n+1 an]
[si:i) s(a’)] [SiN) S(N)]

The contribution of type (iii) from the jth and
(j + D)th blocks is

— ) .., ). G+ . (7+1)
CirCigy — Y(S ’ > Sn 5 51 » s Sp )
— () (5+1)
= - z‘]k(zsn+1—1sk—z+l) (3.2)
=1

Note that if the configurations of blocks j and
(j+ 1) are interchanged their mutual energy is not
invariant; that is, the matrix Y is nonsymmetric.

The total energy of the chain in configuration
(er50557 0, CN) is

Xcl + ch Ca + Xcz
+ Y, e+ Y,

CN_1-CN

H(cls Y N)

+ X,

¢ The simplest derivation of the nearest-neighbor result (that of
Ref. 2) uses cyclic boundary conditions whereas we use open-chain
conditions to derive (2.6). However the appendix to this paper is a
rigorous proof that the boundary conditions are ummportant See
also the remarks at the end of Sec. 3.
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Defining a matrix ¥ and a vector U by the relations

Vci.cj = ¢Xp —ﬁ(%Xc, + YCi-Cj + %ch)’

U, = exp —38X,,, (3.3)

we find that the partition function is
QNn = Z- o zexP —ﬂH(Cla o ,CN)
c1 CN
= z T z Ucchlv%VCz.Ca T VCN—lycNU"N
cy cN

= UTy¥1u (3.4)

The vector U can be regarded as representing end
effects due to a deficiency of neighbors for the spins
near the ends of the chain.

Because ¥ is, in general, nonsymmetric, it may not
be similar to any diagonal matrix and the rigorous
evaluation of (3.4) is not quite straightforward, even
in the limit N — c. For example, Montroll, in
calculating the second-nearest-neighbor partition
function from a formula similar to (3.4), was obliged
to exhibit a full orthonormal set of left and right
eigenvectors for his matrix; the existence of such a set
is not automatic for a nonsymmetric matrix.

We overcome this difficulty in a completely general
fashion in the Appendix, where we show that the
Ox. of Eq. (3.4) has the following property:

(log Qnw)/(N — 1) —log 4y, (3.5)

where A, is the positive, nondegenerate, largest
eigenvalue of V. The only conditions necessary for
this result are that ¥ and U are of finite size and have
positive elements.

If we had applied cyclic boundary conditions? to
the chain, the formula (3.4) would have been

as N — oo,

Qunn=Tr V¥,

Now it is easily proved that, for any M x M
matrix V,

M
Tr vV =YY,
=1

where A, are the M (possibly degenerate) eigenvalues
of V. Hence, for cyclic boundary conditions

QNn ~ }'i\f’

where 1, is the dominant eigenvalue of V.

Therefore, the appendix is actwally a rigorous
demonstration that open and cyclic boundary con-
ditions lead to the same thermodynamic behavior for
the type of system we have been considering.

4. REDUCTION OF THE GENERAL
EIGENVALUE PROBLEM’

When there is no external B field the energy of the
chain is unaltered by a complete “spin flip”; in fact
the matrix ¥ of (3.3) has the following property:

..,s}v)

.,_SN;_S{,...

V(Sla o 9SN; Si, -
= V(—sla . s —SEV)a
B=20. 4.1

Also, if the spin / is an integer, 5, may take the
value zero and clearly

V(07.‘.’0;s17‘.

for

, 0).
4.2
From (4.1) and (4.2) it follows that, by suitably

ordering the configurations ¢;, we can cast V into the
following partitioned form:

"SN)= V(Sl,"',SN;O,"'

= (A ----- ), for half-integral [,
or .
¢ xib
V= le xT , for integral I.
D b'¢ C

Here A, B, C, and D are square matrices whose
dimension is the greatest integer /’ not exceeding
(21 4+ 1)*/2. x is a column vector of dimension /'.

Defining the orthogonal matrices

I
1.0} 1
L=2%o" 2t o") =1
110 =1
we find that
A+B!{ © _
TWVT{ =~ . , for half-integral /,
0 |A—B
C+D 2| 0
VT =] 2)x* | 1 0" |, forintegral I
0 0OiC—-D

4.3)

Equation (4.3) shows that the dominant eigenvalue
of Vis equal to the dominant eigenvalue of one of two
smaller matrices, each of approximately one-half the

7 This paragraph generalizes the work of Montroll (Ref. 3) and
includes as a special case the reduction of M. Suzuki, B. Tsujiyama,
and S. Katsura, J. Math. Phys. 8, 124 (1967).
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dimension of V. With reference to the right-hand side
of (4.3), we believe that it is always the upper sub-
matrix which contributes the dominant eigenvalue of
V, but we have not proved this.

5. REDUCTION OF EIGENPROBLEM FOR
SPIN 3}

In the case B = 0, / = 4, the entire problem may
be reformulated in terms of the variables #; defined by
(2.2). The result is a single eigenproblem of order
271 instead of fwo such problems as in Sec. 4.

For an interaction of range n we consider a chain
of length N(n — 1) + 1. When B = 0, the energy of
the chain is independent of #:

‘H(tl’ e 2 tNm)
=it + 6L+ + )
- Jz{t1fz + "t fvmeaf Nt —
Jodtaly -ty + 0+ Luvenygr " Lvm)s
5.1

where we have temporarily put (n — 1) = m.

Again we impose a grouping of the variables into
blocks:

[til)’ .. t(l)l] [t(") ..

The products #;£;,, -
of two types:

(2) (N)
Lt ,t!

“ ;4 occurring in (5.1) are

S U

() ¢, and 1,,, may be in the same block,
(ii) 1, and t,,;, may be in adjacent blocks.

The contribution of type (i) from the jth block is

ch = X(t(a), .. t(:l)l)
e P (5
= - ka zt ! tH{)]. ot (5.2)

OL {

{
I 2 3 q 5

Fic. 1. p = 1.2. Zero-field specific heat of an infinite spin-}
ferromagnetic chain with an interaction potential
Ey= —Jlli —j** |i—jl<n
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and the contribution of type (ii) from blocks j and
G+ 1) s

€:5¢5+1 = Y(t(]), e titj)15 t(h‘—l) . t(J+1))
n
L(3) 4 (3+1) G
== z‘lkztr(t])z 'r(zj)z+1 o tn11t1]+1 s tkitl .
(5.3)
As in Sec. 3, we define
cj,cj—“ B exp ﬂ(%X + CisCi+1 + %Xcin)’
U, =exp — 2ﬂch, (5.4)

and once more the partition function has the form
1

Oymer = 2007530, 2= 3,

fo=—1

where the dimension of U and ¥ is 2" and both have

positive elements. The result of the Appendix is again

applicable:
(lOg QNﬂH—l)/N —1— log }'max , as
where A, is the dominant eigenvalue of V.

6. NUMERICAL RESULTS

Using the matrix defined by Egs. (5.2)-(5.4), we
have programmed a digital computer to calculate
specific heat curves for the spin-} chain in zero B-
field. Considerations of computer time and storage
space limited the treatment to cases where the inter-
actions have range less than 8 lattice spacings: even
s0, 64 X 64 matrices were processed.

In order to test a conjecture made by Kac (see
Sec. 7), we chose the mutual energy of two spins to be

—Js,s. i — jl|®,
Eﬁz{ szsygll J!

(5.5)

N — o0,

li—jl <n,
li—=jl>n,
where n is the range of the interaction.

The specific-heat curves are shown in Figs.
for various values of n and p.

Cv
R

(D-(4)

1 L 1

al
A\
<

t
2 3 4

oO

Fic. 2. p = 1.5. Zero-field specific heat of an infinite spin-}
ferromagnetic chain with an interaction potential

E;=—Jlli—j's |li—j|<a



44 J. F. DOBSON

o3 il
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4 5

Fig. 3. p = 2.0. Zero-field specific heat of an infinite spin-}
ferromagnetic chain with an interaction potential

Ey=—=Jdlli—ji** li—jl<n

A direct method has been used elsewhere to calcu-
late the partition function and specific heat for finite
chains of length 6 and 7 with all spins interacting.’
The results of the direct calculation do not differ
greatly from those shown in Figs. (1)-(4). The infinite
chain considered here naturally gives rise to slightly
more sharply peaked curves, while the maxima occur
at somewhat higher temperatures.

7. DISCUSSION

The one- and two-dimensional Ising models differ
fundamentally in that no phase transition occurs in
one dimension for any finite-ranged interaction,? while
in two dimensions even a nearest-neighbor interaction
results in a phase transition.!® However it is known
that in both one and two dimensions a potential of the
form

H(sls'.'asN)= —(J/N) z Sz'sj’ N—»oo,
1<i<ji<N

leads to a finite discontinuity in the specific heat
(the well-known “molecular field theory” type of
phase transition). Domb!! and Kac!? have raised the
question of phase transitions for a more physical
infinite-ranged potential of the form

E;; = —Jssifli — 17

8 D. Rapaport (private communication).

9 E. W. Montroll, J. Chem. Phys. 9, 706 (1941). In particular,
see p. 711. Montroll notes that the dominant eigenvalue of the matrix
¥ must become degenerate if a phase transition is to occur. The
theorem of Ref. 14 (see also the Appendix) rules out this degeneracy
for a finite-ranged interaction.

10 The first solution of the two-dimensional problém was given
by L. Onsager, Phys. Rev. 65, 117 (1944).

11 C. Domb, in Critical Phenomena, Proceedings of a Conference,
Washington, D.C., 1965 (U.S. National Bureau of Standards,
Washington, D.C., 1966); N.B.S. Misc. Publ. 273.

12 M. Kac, Brandeis Summer School Lectures, 1966 (to be pub-
lished).

-k
O{-‘__A‘__«ﬁg,‘__;_.‘, L . : 8 .

o [ 2 3 4 5

Fic. 4. p = 2.5. Zero-field specific heat of an infinite spin-}
ferromagnetic chain with an interaction potential

E;=—Jjli—j*% li—jl<a

=

Kac conjectures that in one dimension a phase
transition does occur when 1 < p < 2, but not when
p>2.

Unfortunately the potentials treated in Sec. 6 do
not have a long enough range to test Kac’s conjecture
conclusively. However for the case p = 2.5 [Fig. (4)]
it seems clear that as the range () of the interaction
increases the specific-heat plots are converging to a
smooth curve with no discontinuity or divergence.
For p between 1 and 2 the results are not inconsistent
with a molecular-field type of transition but other
kinds of behavior cannot be ruled out.

The curves do, however, permit an estimate to
be made of the Curie temperature for an infinite-
ranged potential (more strictly, a lower bound can
be given for 6, , the temperature at which the specific
heat has its maximum value, finite or infinite; see
Table I). The result quoted in Table I for p = 2.0 is

TasLE 1. Estimates of the “Curie” temperature
for an infinite-ranged interaction 1/re,

P Omax

1.0 >3.1 (unphysical)
1.2 >2.7

L5 >2.1

1.8 =1.85

2.0 =1.63

2.2 =147

in good agreement with a calculation by Joyce!® who
used series expansions to investigate the zero-field
magnetic susceptibility of a chain with an infinite-
ranged potential Jf|i — j|>. He obtained a Curie
temperature of 6, = 1.64, compared with 6., = 1.6,
as shown above.

;3 G. S. Joyce, quoted by C. Domb (see Ref. 11, particularly p.
39).
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APPENDIX
va = UTVNW
R R .
= z z Us(V‘ )ss'Ws’ ’

s==1 §"=1
where V' is an R X R matrix with positive elements,
and U and W are column vectors with positive
elements.

Then (i) V has a nondegenerate eigenvalue Z; of
largest modulus and A, > 0 (this follows from a
theorem of Frobenius¥) and (ii) there exists a positive
constant C such that

Qn/AN —>C as N — oo.

(Since we are to take logarithms of this relation it is
essential that C # 0.)

Let

(A1)

Proof of (ii): Any matrix V can be factorized in
Jordan canonical form

V = PAPY,
Y& = pANpPL, (A2)
where P is nonsingular and A is the direct sum of
simple Jordan matrices D;:

A = dlag (Dla D25 T, DIIrI)'

Corresponding to each nondegenerate cigenvalue 1
the simple Jordan matrix is just the 1 X 1 matrix A.
However, to each degenerate eigenvalue A, there
correspond one or more matrices D, of the form

(Di)aﬁ = )’i(saﬂ + 6a+1./1~ (A3)

(For matrices with complete eigenvector spaces the
D; are all 1 X 1 but for less well-behaved matrices
the D, are larger.)

We order the eigenvalues of ¥ according to their
modulus, 4, > |4,| > |45 - - - > |Agl. Since 4, is non-
degenerate, D;is 1 X 1 and

A = diag (A, D,, - -+, Dy))

so that
AN[IY = diag (1, DY/A, - - -, DY/AY).  (A4)
[The basic aim is to show that all terms on the rhs
of (A4) approach zero, except for the first term.]

14 8. B. Frobenius, Preuss. Akad. Wiss. 514 (1909).

From (A3) it follows by induction (or merely by
inspection) that

> Mi—1 r 7
(Dé\)aﬁ = z A?_T A’Cr(saJrr,ﬂ
=0
where D, is M, X M, i.e.,
Oa (ﬁ - d.) > Ns
(DM)ep = \ AP NCy,, N2(B—a) 20,
0, B —a)<O.

Further routine manipulation shows that, for ¥ >
20 =21 — a,
((D)pl 2] < 1A 12of 2 ¥1272 NOY 1A 24P,
i>2,
where the term in square brackets is bounded (and in

fact it - 0) as N — oo.
Thus, fori > 1,

for

(D¥)epl2y = O(p™), as N— o0,  (AS)
where p= M’Z/AII% <1
(A4) and (A5) lead to the result
(AN)aﬂ/ lllv = 6«161ﬂ + O(PN)~ (A6)

This is the required ‘“smallness condition” men-
tioned after Eq. (A4).
Substituting (A6) into (A2) we obtain

(VN)nzﬂ/}'iV = Pal(P-l)lli + O(pN)’ (A7)

since a constant, finite, linear combination of O(p¥)
quantities is rigorously O(p").
Now (A7) shows that

Pyu(P )y 2 05

for V' has positive elements and 4, > 0 so that
(VV)y/AY > 0 for all finite N.
Combining (Al) and (A7),

(A8)

Qi = [zﬁ UaPﬂ(P*l)mW,,} +0(pY). (A9)

Now the quantities (P),,(P™"),, are nonnegative
[by Eq. (A8)] and they cannot be zero for all «,
since this would make either P of P~ singular, con-
trary to (A2). Hence from the positiveness of U, and
Wy, the quantity in square brackets in (A9) is
positive, i.e.,

Qi\’/}'ilvv g C5 as N— o0, (AIO)
where

C= [2 UaPal(P—l)lﬁWﬂ:| >0. Q.E.D.
af
Taking logarithms of (A10) we find that

(log Qn)/N —1log i, as N - oo,
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The classical theory of electromagnetism including magnetic monopoles is formulated in terms of
harmonic functions. The fact that there is no consistent action-integral formulation of the field that yields
both particle and field equations for both electric and magnetic charges is discussed in detail. It is seen
that a consistent formulation can be developed through an action integral, but, in such a development,
a monopole does not have what has been considered to be an appropriate interaction with either an

electric charge or another monopole.

A number of analyses of the classical theory of
magnetic monopoles has been presented.!~* The
basic reason for an interest in such a classical theory
is that, if magnetic monopoles exist in a quantum
formulation of the electromagnetic field,7 this
formulation should have a demonstrable classical
limit. A basic result of previous work on magnetic
charge is that no action-integral formulation of
electromagnetism exists from which one can derive
both particle and field equations when both magnetic
and electric charges are included, provided that
magnetic charge is considered to be a source for a
conventional magnetic field. In this paper we shall
examine the classical action-integral formulation in
detail and show that such a formulation can yield both
particle and field equations, but only if one considers
unexpected interactions between electric and magnetic
charge and between magnetic charges. The essence of
this paper is that we consider what happens if we
insist upon a nonexact electromagnetic field (that is,
a field whose tensor curl is nonzero) and also insist
upon a consistent action-integral formulation of this
field that yields both particle and field equations. The
result is that magnetic charge does not have an
appropriate behavior in the presence of electric
charge, nor does it have the conventionally conceived
interaction with a monopole field. Our work thus
contrasts to that of Rosenbaum?® who assumes the
monopole is a source for a conventional magnetic
field and shows that such an assumption is inconsistent
with a classical action principle.

The work in this paper is motivated by the fact that
to date the existence of monopoles has not been
confirmed.® As long as such particles are absent it

1 N. Cabbibo and E. Ferarri, Nuovo Cimento 23, 1147 (1962).

2 P. A. M. Dirac, Phys. Rev. 74, 817 (1948).

3 F. Rohrlich, Phys, Rev. 150, 1104 (1966).

4 D. Rosenbaum, Phys. Rev. 147, 891 (1966).

5 P. A. M. Dirac, Proc. Roy. Soc. A133, 60 (1931).

6 J. S. Schwinger, Phys. Rev. 144, 1087 (1966).

7 J. G. Taylor, Phys. Rev. Letters 18, 713 (1967).

8 It has been reported that H. H. Kolm [Phys. Today, No. 11, 20,
69 (1967), “Search and Discovery”] has found some experimental
evidence to support the existence of a monopole.
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might be well to examine whether their absence is due,
not to their nonexistence, but to assumptions of
properties not in accord with their classical nature.
We develop the theory of electric and magnetic charge
in terms of Hodge’s potential theory® and use the
notation of differential forms of Flanders.

In the subsequent development we shall generally
consider that we are dealing with a four-dimensional
manifold M with a signature of two. Let us consider
the space of p-forms on M as an inner-product space
through the product w A V *5 where w and # are two
p-farms, * is the Hodge star operator, and Ais the
exterior-product symbol. It is a basic result of Hodge
that if w is any p-form on M, there is a (p — 1)-form
o, a (p 4+ 1)-form B, and a harmonic p-form y such

that w=dx— 8+, 1)
where du is the exterior derivative of « and 48 is
*d *§ on M. We call ¢ harmonic if dy = éy = 0. It
is clear that (6d + dd)y = 0. The forms «, §, and y
can be proven to exist and furthermore they are unique.

Let us form

*o=0%+d*p+ *y, )
where we have used the relation that if 4 is any p-form
on M, ¥*u = (—1)"y,

Equations (1) and (2) have been discussed by
Cabbibo and Ferarri! and are completely equivalent
to Egs. (2.12) and (2.12*) of Rohrlich® except for the
appearance of the free fields y. Because of this fact
we are led to associate the electromagnetic electric
charge four-potential 4; with the one-form «, the
magnetic charge four-potential B; with *8, and a
free-field solution of the electromagnetic field wave
equation with y. We associate a current density with
the following two one-forms:

Jo = dw = 0 du, 3)

Jon = *do = —*db B. “

® W. V. D. Hodge, Theory and Applications of Harmonic Integrals
(Cambridge University Press, Cambridge, Eng., 1952).

10 H. Flanders, Differential Forms (Academic Press Inc., New
York, 1963).
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It is readily seen that dJ, = 6J,, = 0, so that both
currents are conserved. Let us consider a p-form v and
a (p + D)-form 7. It can be shown that, if we choose
an (n — 1)-dimensional surface of M such that ¥ and
n are zero over this surface (or assume M closed),
then

dv A ¥ = v A *on. (5)
Let us note that, by (5),
p=wA *w
= (x Add *a) + (B A*dOP) + (y A *y),
g=wAw=20Add*+y Ay (6)

The quantities p and o are four-forms and either one
considered separately is suitable for the formation of
an action integral that when varied with respect to «
or *# yields the field equations of the electromagnetic
field. If we take the sum or difference of p and 5 and
form an action integral, variations with respect to «
and f yield equations of the form

*dd B+ dda = Jo + J,. %)

Let us now set the currents equal to a constant times
a velocity and consider a variation with respect to these
velocities of the action-integral formulation for p and
o. The right-hand sides of Eqs. (6) contain the only
terms of p and o which cannot be reduced to a perfect
differential and thus are the only nonzero terms in-
volved in an action integral formed of p and ¢ since
we have assumed M closed. If we write ¢ as an action
integral in terms of particle velocities, we find

*
SimFvievi+ef A v+ Yimau;cu;+eB;uy,
)
(3

where m;, e;, and u, are the electric charge’s mass,
charge, and velocity, and m}, ef, and v, are the
corresponding quantities for the magnetic charges.
The quantities 4, and B, refer to the one-forms « and
*# at the position of the jth electric and ith magnetic
charges, respectively. The equations of motion for
the magnetic and electric charges arise from a variation
of the quantity (8) with respect to v, and u,, respec-
tively, and are given by

m;k (vz‘)m + e;‘k (Ui)n[an(Az’)m - am(Ai)n] =0,
m;(a)" + e,(u),[0™(B)" — "(B)"] =0, (9)

where 0" = ¢/dy, and the superscripts on the field
quantities refer to their four-space components. It
is readily seen that neither of Eqgs. (9) give an expected
interaction between electric and magnetic charges,
nor do they give any interactions at all between like
(i.e., magnetic-magnetic or electric-electric) charges.

We would expect that the force of an electric charge
in a magnetic monopole field would be given by

¢ = ePi*y g B,, where P is the four-dimensional
. IYESL

Levi-Civita tensor density.

Let us now consider the interactions of a number of
particles with an action integral formed of p alone.
We see that the relevant terms in the particle Lagran-
gian are

* * 1
Im¥viev,—e*Bov, + 2 mau, - u; + A uy.
i 7
(10)

The minus signs on the terms ef By, arise because
O A*¥0B = —(d *f A *d *f) on the manifold M.
Variation of (10) with respect to (v;),, yields

mF (b)m — € [0m(By — 0.(B),J(v)" = 0. (11)
This result shows that the interaction between
stationarylike magnetic charges in a rest frame is
attractive, but such a result is at complete variance
with the forces arising from the divergence of the
Maxwell stress tensor when monopoles with con-
ventionally assumed properties are considered. The
minus signs in (11) arise in an essential way from the
action integral, the assumed velocity of the one-form
B, and the metric properties of M, and are independent
of the sign in Eq. (4). In addition we see that Eq. (10)
yields only interactions between like charges, that is,
magnetic-magnetic and electric—electric, but none
between unlike charges. To include interactions
between all charges, we are led to consider some
linear combination of p and o. If we use their sum or
difference, since we must choose either the sum or
the difference in order to obtain definite particle
equations, we see from Eq. (7) that the fields are no
longer appropriately specified. A monopole could give
rise to an electric field and vice versa. We are thus

led to the following action integral:
L= (o4 i*w)A*o +i*o). (12)

This quantity when varied with respect to o or *g
yields appropriate field equations.

We can further show that

wti*fo=d+i*Da+i*)=d o, (13)

If we define w, = du_ and, since d, o, A *d, «, =
2 de, A *do, , we see that

(w4 i*w) A * o+ i*0) =2(v A *o + io A w)
(14)
It is of interest to note that by the last term in Eq.

(13) the quantity in Eq. (12) can be considered to be
the inner product of two-forms which are exact. A

= 2w, A *o,.
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reduction to a particle Lagrangian for one magnetic
and one electric charge yields

dm® +im*u® —e*B-v+ eA-u

+ ie* A-v -+ ieB-u (15)

Variation of the quantity (13) with respect to w and v
yields

mu; + (0,4, — 0;A )’ + ie(0,;B; — 0,B)’ = 0,
m* v, — e* (0,B;, — 0,B)V’

+ ie* (9,4, — 0,40 = 0. (16)

If we consider the complex conjugate of Eq. (13) we
would find

w—i*=(d—i*d)(e—i*)=d a_ (17)

and, if w_ = do_,
(0 — i *0) A ¥(w — iv) =2(w A *0o — 0 A w)
(18)

The quantity in (18) when varied with respect to «
and *f yields appropriate field equations, and when
varied suitably with respect to particle velocities
yields Eqgs. (16), except for a sign change on the last
term in each equation. This sign change can be
compensated for by the substitution e* — —e*, s0
that nothing new has been achieved. It is interesting
to note that the quantities displayed in (13) and (17)

= 2w_ A *o_.

correspond to the tensors considered by Laporte and
Uhlenbeck! in their work concerning a spinor
formulation of electromagnetism.

In summary we have shown that if we consider a
classical two-form field which admits of magnetic
monopolies (i.e., such that dw # 0) and insist upon
the existence of an action-integral formulation which
yields both particle and field equations, we find that
the interactions between monopoles and between
monopoles and charges cannot be in accord with
the customarily assumed properties of the monopoles.
These interactions between monopoles and charges
arc displayed in Egs. (16) and (10), and these equations
are in turn the only significantly different equations
permitted by the formalism. These results cannot help
bring up the question as to whether the nonobserva-
tion of monopoles might arise from the fact that their
anticipated and actual properties might be different.
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This paper gives rapid proofs of two binomial coefficient identities found by Rosenbaum [J. Math.
Phys. 8, 1977 (1967)] who obtained the identities from rather involved considerations of commutation
relations. The present proofs make use of the Vandermonde convolution, or addition, theorem and a
well-known fact that the kth difference of a polynomial of degree £ — 1 is zero. In a sense the two

special cases are not essentially new.

Put
a=Eer(TLI) o
and
-3 o

Here, for all real or complex x and integers n > 0,

(z)=x(x——1)---(x—n+l)’ with (3(;) ~1,

n!
(3

is a binomial coeflicient and is a polynomial of degree
n in x. Rosenbaum® recently found that 4 = 0 for
integers «, € such that e > a > 2, and B =0 for
integers «, € such that « > 1, € > 2, and € > .
We show here that both results are easy special cases
of known binomial identities and in this sense are
not new results at all. The techniques may be of interest
to workers in physics unfamiliar with the vast older
literature on binomial identities.

Our proofs make use of some familiar facts about
binomial coefficients and finite differences. The reader
may consult the excellent book by Schwatt* on opera-
tions with series, a standard book on finite differences,3
an editorial note and related papers,® or various
papers by the present author® for further information
on these relations and more general ones.

The binomial coefficients satisfy the elegant addition

y

TR

valid for all real (or complex) x and y, and any non-

4)

k=0

x+y)

n

! David M. Rosenbaum, J. Math. Phys. 8, 1977 (1967).

2 1. J. Schwatt, Operations with Series (The University of Penn-
sylvania Press, Philadelphia, Pa., 1924; reprinted by Chelsea Publ.
Co., New York, 1962).

3 C. Jordan, Calculus of Finite Differences (Chelsea Publ. Co.,
New York, 1950).

4 Editorial comment on r!, Math. Mag. 39, 157 (1966).

5 H. W. Gould, Am. Math. Monthly 63, 84 (1956); 64, 409 (1957);
Duke Math. J. 27, 71 (1960); 28, 193 (1961); 29, 393 (1962); Math.
Mag. 34, 317 (1961).
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negative integer n. This follows at once from the
identity (1 4 6)*(1 + #)* = (1 + t)**Y. The coeffi-
cients also have the property that

)=t

for all real or complex x, and nonnegative integers n.
From relation (5) we find at once that

)20 = (0

by (4) and, hence, the sum is zero for integers « > 0.
What is more, it is also evident that 4 = 0 for all
real or complex ¢, a fact not made evident by the
commutation-relation proof of Rosenbaum. So much
for A4.

Let f(x) be an arbitrary polynomial of degree m in
x. Then it is a familiar fact from finite-difference
theory that A*f(x) = 0 for £k > m, where we define
Af(x) =f(x + 1) — f(x) and A*Hf(x) = AA*f(x).

What is more, it is well known and easily proved that

(%

x

2

n=0

—€ _

A

n

N () = 120(—1)'6—"(’;) fx . (6

Thus we see that Rosenbaum’s series B is merely

(—1)*A%f(x), where

@ =
evaluated at x = 0. Since f(x) is a pelynomial of
degree o — 1 for « > 1, it follows that the «th differ-
ence of this must be zero. Again, the result is true for
all real or complex values of ¢, which does not affect
the application of our theorem.

The fact that the binomial coefficient (2) is readily
defined for arbitrary real or complex x seems to be
overlooked in many applications and thereby proofs
of identities become involved and cumbersome.

In closing we should like to point out a very general
binomial identity found as early as the year 1793 and

x+e—1

o« —1
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still not widely known. A detailed history and many
results concerning this may be found in a recent paper.®
The identity is due to Rothe and is as follows:

n x (x + bk) y (y + b(n - k))

k=0 x + bk k y+ b(n — k) n—k
__x+vy (x+y+bn) )
x4+ y+4+ bn n

¢ H. W. Gould and J. Kaucky, J. Combinatorial Theory 1, 233
(1966).
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and, with suitable attention, is valid for all real or
complex x, y, and b, and all nonnegative integers n.
The novel point about (7) is the parameter b which
allows this formula to include not only the Vander-
monde relation (4) but perhaps ninety percent of the
common binomial identities. Relation (5) is particu-
larly useful in manipulating binomial summations.
It together with the symmetry (3) = (,,*,) and changes
of summation variable suffices to reduce most all the
known identities to some form of the Vandermonde
or other theorem.
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The result of Nelson that the total Hamiltonian is semibounded for a self-interacting Boson field in two
dimensions in a periodic box is derived by an alternate method. It is more elementary in so far as

functional integration is not used.

In Ref. 1, Nelson has proved the semiboundedness
of the Hamiltonian for a class of two-dimensional
self-interacting Boson-field theories in a periodic spatial
box. In Ref. 2, Glimm has detailed and extended the
result of Ref. 1. We will give an alternate derivation of
the results of Nelson avoiding the use of functional
integration, central in Ref. 1. As will be seen, the
idea of the proof, however, is not essentially different
from that of Nelson and we draw on results of his
paper. It is hoped that a new method of proof may
lead to some new results or insights.

We consider a Hamiltonian of the form

H=H,+ V, 49

where H, is the free Hamiltonian of a particle of
mass u, # 0 expressed in terms of the neutral scalar
field ¢ and its momentum conjugate =:

H, = % J (VR + i + 7 Q)

As is evident we are working in a periodic box of
length 1. V is a polynomial function of the ¢(x). We

1 E. Nelson, ‘A Quarticinteraction in Two Dimensions” in
Mathematical Theory of Elementary Particles, R. Goodman and I.
Segal, Eds. (M.I.T. Press, Cambridge, Mass., 1965), pp. 69-73.

2 J. Glimm, Commun. Math. Phys. 8, 12 (1968).

denote by H, and ¥V the parts of H, and V depending
only on the creation and annihilation operators of the
N lowest-energy modes of the free Hamiltonian. We
always imagine we are working with YH, and ¥V, but
derive inequalities independent of N.

Theorem: Assume for each « > 0 that there is an
M, such that

O] exp™™"7 [0y < M,, allN.

|0) denotes the vacuum of the free field. Then there is
a B such that

NH, + ¥V > B, forall N,

Actually as will be seen it is not necessary to satisfy
the condition above for all «, but only for some
sufficiently large o that one can calculate. We refer to
Refs. 1 or 2 for the result that the conditions of the
theorem are satisfied for a large class of self-inter-
actions. This much of Nelson’s proof requires no
functional integration.
We follow the notation of Ref. 2:

$(x) = 3 Qo Ha, + a*)et* (3)
k
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and define
1\
qo = (‘—) (ao + ag),

2w,

3
Do = —i(w?“) (a0 — a3),

1\
dix| = (_‘“) (ap + a7 + a_ + a2y,

4w,
1
q_jxgy = — (Zw_k) (—ap + afy + a_jg — aXp), @)
3
Pkl = — (%c) (a, — a,f + a_, — a%y,

Px = 4

In terms of these variables,

Hy = Z%(Pi + wl%qlzc —wy) = %Hk' &)

We represent these operators on the L2 space of EV
with measure the product of the measures u,,

3
Cﬁﬂ(awl*'aﬁl"“—wl““ﬁml

duty = (ym)te dgy (6)
with ¢, a multiplicative operator and
P = 1(0/0g;) — g, (7

A complete set of eigenfunctions for H, is given by

n=0,1,2,---, ®

with corresponding eigenvalues
£y, = nowy, )

A, (x) is the nth Hermite polynomial.
The chief inequality we will exploit is the following

numerical inequality for x, y real, y > 0:
xy< e+ ylny. (10)

The expectation value of the interaction V in a state
with function F is given by

(11)

We apply (10) with x = rV and y = r~1|F|? to derive
the result

—(F| V |F) Sfd,u e + 1fdy [FI?In |F)? — L
r r
(12)

r is a numerical factor to be fixed later. Note that

f du eV = (0] ™ |0,

(F| V |F) = f du |FI2 V.

(13)

We intend to bound the second term on the right
side of (12) by the expectation value of H, in the
state F. We consider the following equation:

f |FI*In |FI* du
— % f F*H,F du

i f [P E) R dufumy, (14)

which easily follows for functions F nice enough so
that all the integrals exist and the differentiation may
be moved inside the integral, a dense subspace in L2
We do not discuss domain questions.

We rewrite (12) using (14):

—(F|V |F)

gfd,ue"V+—2-<F|H0!F)--llnr
Ar r

+ 2_17*% f[(e‘”“F)*(e‘H"’F W dpl iy (15)

The theorem we are after is established provided
Ar > 2 and we can bound the last term in (15).
The remainder of the paper is devoted to a study of

f[(e—HotF)*(e-HotF)]H-/lt d/,t =J‘ie—HotFl2+2lt d,u (16)

We consider, corresponding to any g in L%*(g), its
expression as a sum of products of the functions in (8):

g@) = 3 Cipooony TTR29GDI A, [9(0)2)
i1s82," " iy s (17)
(The g, are merely the ¢, in some order.) The
i1is -,y ar€ now considered as functions on the
discrete space whose points are the indices of the C’s.
To the point (i, &, * -+, iy) is associated the point
mass II, e*. With this measure, the transformation
T that carries a set of C’s into the corresponding
function g as in (17) is norm preserving as a map from
12 to L% We will later show that T is norm decreasing
as a map from /! to L% Assuming this for a moment,
we complete the proof of the theorem.
We apply the Riesz-Thorin convexity theorem to
the transformation T obtaining

[Ie~HotFl2+2).f d/,t

< ( > Tl lexpl—o,,,... 1
i1,02," " Wiy S

[{(1+341)/2(1+A8)]
% C )

. |[2(1+/1t)/(1+3lt)]
N

(18)

inig e,
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with
wil,iz-' iy = z isws . (19)
s
In the right-hand side of (18) we apply the Holder
inequality to obtain an expression involving the
weighted sum of the squares of the absolute values of
the C’s which is equal to one:

fle—HotF|2+2lt d,u

24t
< ‘: 2 H o exp (__wibiz.._"iﬂ M)] .
i1,89, + iy S 24
(20)
It follows that

d [ - 7
4 [y,

< 221n |: > T ewp (— %whm\)] 1)

i i
If wo/A > 2, this gives an inequality with finite right-
hand side in the limit N — co. It is clear that the
theorem is now reduced to establishing that T is norm
decreasing from /! to LA

Lemma. Let § be the space of sequences {C,}
y=0,1, -, N with measure at v, e¥; and Y the
space of functions on R with measure

(1/m)te—=" dx; (22)
and T the operator from S to Y given by
1
THC,H=2C e’A(x 23

with 4, the yth Hermite polynomial; then, T is norm
decreasing from /1 to L%

It is easy to see that this lemma would follow from
establishing that
3 @

[ I CRCRIO TR SV R RS

ki3

X A()AL)e dx | <1 (24)

for all integers a, b, ¢, and d > 0.2 We use the generat-
ing function

—t212t7 N
¢ =2 N1 AMZ) (25)

to obtain

1 © .
(m Lf’x ¢ A(X) () ALX)A,x)

_ alb!cld!
Ha+b+c+d)
X (rs 4+ rt + ru + st + su + tu)%(a+b+c+d)

pick-a-power *

(26)

. A¥latbretd)

where pick-a-power means to find the coefficient of
the monomial r®s*°u® in the expansion of the expres-

sion. Note that @ + b + ¢ + d is even or the integral
vanishes.

We make the crude estimate

(rs 4 rt 4 ru + st 4+ su + t)bgrors

< Heamtme D s g g L (2T)
Now,
arvrera (@ F b+ c+d)!
(r + S + t + u)pick-a-powcr - a! b' C! d' .
(28)

Denoting the left-hand side of (24) by LHS and using
(27) we obtain
LHS S e—a—b—c—d
x (a+b+c+d)!
(a! b!c!d!)%‘ [Ma+b+c+ d)]!z%(a+b+c+d) )
(29)

That the right-hand side of (29) is < 1 we leave as any
easy exercise.

3 Actually, it is sufficient toleta =b=c = d.
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Dirac’s bra and ket formalism is investigated and incorporated into a complete mathematical theory.
First the axiomatic foundations of quantum mechanics and von Neumann’s spectral theory of observables
are reviewed and several inadequacies are pointed out. These defects then are remedied by extending the
usual Hilbert space to a rigged Hilbert space as introduced by Gel'fand, i.e., a triplet ® < 3¢ < @’,
where X is a Hilbert space, © a dense subspace of JC provided with a new (finer) topology, ®" the dual
of ®. Tt is shown that this mathematical structure, together with the Schwartz nuclear theorem, allows us
to reproduce Dirac’s formalism in a completely rigorous way, without losing its transparency; this makes
the theory easier to handle. The temporal evolution of the system and the wave equation are considered.
Finally the probabilistic interpretation and the physical aspects of the theory are discussed; @ is identified
with the set of all physically accessible states of the system, @ with the set of all possible experiments
(apparatus) to which it can be subjected; this provides a direct connection with Feynman’s formulation

of quantum mechanics.

INTRODUCTION

For the needs of everyday calculations, for example,
in atomic or nuclear physics, Schrédinger’s language
of wavefunctions is, in general, sufficient. Similarly,
for the study of any particular process in quantum
electrodynamics, Feynman’s rules are a very powerful
tool. But for more general problems, especially in the
field of elementary particle physics or any situation
where the occupation-number operator is essential,
it becomes necessary, and also much simpler, to have
recourse to Dirac’s bra and ket formalism.! The
latter has become therefore the standard presentation
of quantum mechanics, owing to its remarkable
elegance and simplicity.

However, it has been known for a long time that
this formalism is not satisfactory from the mathe-
matical point of view: it is not basically incorrect, but
it is not well defined! Yet elementary quantum me-
chanics has been put on firm mathematical grounds by
von Neumann? many years ago, and this approach
has recently regained some popularity®* among
physicists in view of the achievements of axiomatic
quantum field theory.® It has remained, however, very

* The material of this paper is contained in a doctoral dissertation
submitted by the author to the University of Louvain, 1966.

t Present address: Palmer Physical Laboratory, Princeton Uni-
versity, Princeton, New Jersey 08540.

1 P. A. M. Dirac, The Principles of Quantum Mechanics (Claren-
don Press, Oxford, England, 1958), 4th ed.

2 J. von Neumann, Mathematische Grundlagen der Quanten-
mechanik (Julius Springer-Verlag, Berlin, 1932) (English transl.:
Mathematical Foundations of Quantum Mechanics, Princeton
University Press, Princeton, N.J., 1955).

3 G. W. Mackey, Mathematical Foundations of Quantum Me-
chanics (W. A. Benjamin, Inc., New York, 1963).

¢ A. R. Marlow, Ph.D. thesis (unpublished); J. Math. Phys. 6, 919
(1965).

5 R. F. Streater and A. S. Wightman, PCT, Spin and Statistics, and
All That (W. A. Benjamin, Inc., New York, 1964).
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far from practical applications and effective use. On
the other hand, the present state of quantum theory is
rather fertile in difficuities, which have, in general, a
highly mathematical character: Many problems in
field theory have been solved by using more powerful
mathematical tools, such as the theory of distri-
butions or the theory of functions of several complex
variables. We think that this procedure should be
extended to a much bigger class of problems, which
includes the study of symmetries; there also, a
systematic use of more refined, and thus more efficient
mathematics becomes increasingly necessary.® With
this philosophy in mind, it becomes very natural to
undertake a mathematical justification of Dirac’s
formalism. But we want in fact much more than an
aesthetic satisfaction! Since this formalism in its
usual form is already a very powerful as well as
clegant tool, it is hoped that a refined version of it
might be still more efficient and, if possible, be able
to solve some of the difficulties that burden present-
day elementary particle physics. There lies the heart
of the problem!

The solution we propose is to replace the traditional
Hilbert space structure by a richer one, namely, that
of a rigged Hilbert space. This concept, introduced by
Gel’'fand et al.,” consists of a triplet of spaces ® <
J€ < @', where X is a Hilbert space, the usual space
of states, @ is a dense subspace of X provided with
an additional, finer topology, and @’ is the dual of
@, i.e., the space of all continuous linear functionals
myer, in Proceedings of Seminar on Unified Theories of
Elementary Particles, H. Rechenberg, Ed. (Miinchen, 1965).

71 M. Gel'fand, G. E. Schilow, and N. J. Wilenkin, Verall-
gemeinerte Funktionen (Distributionen) (VEB Deutscher Verlag der

Wissenschaften, Berlin, 1960) Bd. I-1V [English transl.: Generalized
Functions (Academic Press Inc., New York, 1964))].
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over ®. This structure brings into the formalism the
extremely powerful and well-developed theory of
topological vector spaces,®® in particular, a systematic
use of distributions or generalized functions.”!° This
proposition is not new; it was formulated first by
Foias,!* then by Maurin,? and recently, in a more
explicit way, by Roberts in two remarkable papers.!3
All these works, however, are essentially of mathe-
matical character, and several physical problems still
need a solution, namely:

(1) To build a complete theory, starting from
probabilistic axioms, and to see how rigged Hilbert
spaces quite naturally emerge from the usual formal-
ism, instead of being a pure mathematical ad hoc
device.

(2) To interpret physically this construction; in
particular, to define the role of the vectors of the
spaces @ and @' in the frame of the quantum theory
of measurement.

(3) To work out specific examples in order to test
the reliability of the formalism.

(4) To formulate the problem of symmetries in that
context, and in particular, the difficulties arising from
a systematic use of Lie algebras.

The study of these points is the aim of the present
work. This first paper is concerned with the general
Dirac formalism itself. Further ones will be devoted
to the symmetry problem and to some examples,
mainly systems of interacting particles (scattering
theory).

The usual Dirac formalism is universally known and
so are its difficulties. These essentially stem from the
existence of unbounded observables and operators
with a continuous spectrum; from this it follows that
the ordinary Hilbert space theory is plagued with
technical problems such as domains of definition of
observables and the appearance of nonnormalizable
eigenvectors. A radical remedy to the first difficulty
would be to admit only bounded observables, as
was first advocated by Segal,!* but this spoils much of
the simplicity of the theory; an impressive example is

8 A. P. Robertson and W. J. Robertson, Topological Vector
Spaces (Cambridge University Press, London, 1964).

% A. Pietsch, Nukleare lokalkonvexe Riume (Akademie Verlag,
Berlin, 1965).

10 .. Schwartz, Théorie des distributions (Hermann & Cie., Paris,
1957-1959), Vols. I, II.

11 C, Foias, Acta Sci. Math. 20, 117 (1959); Compt. Rend. 248,
904, 1105 (1959); 255, 247 (1962); Rev. Math. Pures Appl. Acad.
Rep. Populaire Roumaine 7, 241, 571 (1962). :

12 K. Maurin, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astron.
Phys. 7, 461, 471 (1959); 8, 381 (1960); 9, 7 (1961); Math. Scand. 9,
359 (1961).

13 J, E. Roberts, J. Math. Phys. 7, 1097 (1966); Commun. Math.
Phys. 3, 98 (1966).

1], E. Segal, Mathematical Problems of Relativistic Physics
(American Mathematical Society, Providence, R.1., 1963).

given by the canonical commutation relation [g, p] =
ik, which requires that at least one of the operators
¢, p be unbounded. Another solution, proposed by
Kristensen et al.,'® consists in keeping unbounded
operators, but changing the space, more precisely
changing its topology in such a way that these
operators become continuous. This idea is the basic
ingredient of Roberts’s formalism,!® which we try to
incorporate in a complete physical theory. For that
purpose we need to review in some detail the axio-
matic approach to quantum theory*—* and to analyze
the difficulties which prevent a rigorous formulation
of Dirac’s language in that frame.

The structure of the work is as follows. Section I
deals mainly with axiomatics; the resulting structure of
the space of states is discussed in terms of super-
selection rules and the concept of labeled observables
introduced by Roberts.?® In Sec. II we review briefly
von Neumann’s spectral decomposition with the
help of direct integrals of Hilbert spaces, following
Marlow,* and we point out the insufficiencies of this
formalism. Section III contains a rapid survey of
mathematical results concerning the spectral theory
of observables in a rigged Hilbert space, and a dis-
cussion of their application to quantum mechanics.
In Sec. IV we construct explicitly the general Dirac
formalism, with particular emphasis on eigenvectors
and eigenvalue equations, matrix elements of observ-
ables, and transformation theory. Section V is devoted
to the temporal evolution of the system and the
corresponding wave equation. In Sec. VI we present a
physical (probabilistic) interpretation of the formal-
ism, first as an adaptation of the usual interpretation
and then a more speculative generalization. Section
VII finally discusses the remaining open questions, as
well as the domain of applicability of the formalism.

I. THE PROBABILISTIC FRAME OF QUANTUM
MECHANICS

A. Axiomatics

The most fundamental aspect of quantum me-
chanics in its present interpretation is its probabilistic
character. The description of a physical system
requires two kinds of elements, the observables and
the states of the system. Given, then, an observable
A, a state « and a Borel*® set A of the real axis, the
aim of the theory is to evaluate the probability that a
measurement of 4 in the state « shall give a result
belonging to A.* Any axiomatization of the theory

15 p. Kristensen, L. Meljbo, and E. Thue Poulsen, Commun. Math.
Phys. 1, 175 (1965).

18 p, R. Halmos, Measure Theory (D. Van Nostrand, Inc.,
Princeton, N.J., 1950).
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will thus consist in giving a sufficient number of
axioms for determining this probability. The possible
schemes fall into two classes, depending upon whether
the observables or the states are taken for the funda-
mental building blocks. The first choice seems easier!”
and has indeed enjoyed more popularity.

The decisive step in this direction was taken by
Birkhoff and von Neumann'® in their historic paper,
introducing the calculus of propositions. Their
method has recently regained actuality with the
works of Finkelstein et al.,’® Mackey,® Piron,? and
Guenin.?' In this approach the primary constituents
of the theory are the questions or propositions, i.e.,
observables that have only 0 and 1 as possible values.
Operations are defined on the set of these questions,
thus giving it a lattice structure (the so-called logic
of the system). The fundamental results can be
summarized in the following theorem:

1. Any irreducible system of questions (i.e., a
system where no nontrivial question is compatible
with any other one) is isomorphic to the set of projec-
tion operators on all the closed subspaces of a Hilbert
space.

2. Any system of questions is a direct union of
irreducible systems.

The usual formulation of quantum mechanics is then
a consequence of this result.

Let us consider first an irreducible system. Observ-
ables can be reconstructed from the questions;
with the above theorem, this corresponds to the
reconstruction of self-adjoint operators on the Hilbert
space JC from projection operators, as given by the
spectral theorem.?? The set of observables of an
irreducible system is thus identified with the set of all
self-adjoint operators on J, compatible observables
being represented by strongly commuting operators
(i.e., all their spectral projection operators commute?3);
this will allow the simultaneous diagonalization of
several observables (see Sec. II). The states of the sys-
tem are defined as some linear functionals over the
questions; by Gleason’s theorem? this leads to the
identification of a state with a density operator, and of
a pure state with a unit ray of J.

17 See, for instance, the discussion of J. M. Jauch, Helv. Phys.
Acta, 37, 293 (1964).

18 G. Birkhoff and J. von Neumann, Ann. Math. (N.Y.) 37, 823
(1936).

19 D. Finkelstein, J. M. Jauch, and D. Speiser, CERN reports,
1959 (unpublished).

20 C, Piron, Helv. Phys. Acta 37, 439 (1964).

2t M. Guenin, J. Math. Phys. 7, 271 (1966).

22 N. I. Achieser and I. M. Glasmann, Theorie der linearen
Operatoren im Hilbert-Raum (Akademie Verlag, Berlin, 1960).

23 M. Guenin and B. Misra, Helv. Phys. Acta 37, 233 (1964).

24 A. Gleason, J. Ratl. Mech. Anal. 6, 885 (1957).

For a general system a similar analysis has been
made by Guenin.?! We shall consider here only the
case where the system can be described by a single
(separable, complex) Hilbert space JC; more general
situations are possible, but they do not admit a
simple physical interpretation in terms of super-
selection rules.?s For this restricted case, the structure
of the system is best characterized with von Neumann
algebras,?® as suggested by Jauch and Misra.?” In this
language, the system is defined by a von Neumann
algebra T of operators on J€, with Abelian commu-
tant: 3 = G’ < 6. Under von Neumann’s central
decomposition,* T is thus decomposed into irre-
ducible constituents, with a corresponding decom-
position of JC into a direct integral:

@
j = f %(z) du(z), (1)
Z

where Z is the spectrum of the self-adjoint generator
of 3. The components J¢(z) are interpreted as super-

selection sectors?; this corresponds to the following
identifications:

(1) The observables are the self-adjoint operators
affiliated to G (i.e., their spectral projection operators
belong to T); they appear thus in (1) as the decom-
posable operators: A4~ {A(z)}, A(z) affiliated to
L),

(i) The essential observables, which generate
supersymmetries,® are those affiliated to 3; they all
commute (since 3 is Abelian)®; they appear in (1) as
the diagonal operators: B ~ {g(z)1(z)}, g € L*(Z, p),
1(z) unit operator of J(z);

(iii) The physically realizable pure states of the
system are those vectors f of J& which have only one
nonvanishing component f(z,), say.

This last restriction clearly leads to a difficulty of
interpretation in the case of a continuous super-
selection rule, for the vector f has zero norm in J¢ if

2 G. C. Wick, A. S. Wightman, and E. P. Wigner, Phys. Rev. 88,
101 (1952); A. S. Wightman, Nuovo Cimento Suppl. 14, 81 (1959).

%8 J. Dixmier, Les Algébres d’opérateurs dans I'espace hilbertien
(Algébres de von Neumann) (Gauthier-Villars, Paris, 1957); M. A.
Naimark, Normed Rings (P. Noordhoff Ltd., Groningen, The
Netherlands, 1964).

27 I. M. Jauch, Helv. Phys. Acta 33, 711 (1960); J. M. Jauch and
B. Misra, ibid. 34, 699 (1961).

8 J. von Neumann, Ann. Math. (N.Y.) 50, 401 (1949); also
Collected Works, H. A. Taub, Ed. (Pergamon Press Ltd., London,
1961-1963), Vol. III.

28 () denotes the set of all bounded linear operators on the
space J; similarly, £(X,, X,) denotes the set of all continuous
linear mappings from the space X, into the space J, (with X, , X,
two topological vector spaces).

30 The hypothesis that all the supersymmetry operators commute,
first made by Wightman, s has been shown by Galindo et al. [J. Math.
Phys. 3, 324 (1962)] to be equivalent to Jauch’s condition?’ that the
system shall have at least one complete system of commuting
observables.
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#({z,}) = 0! In order to avoid this trouble, we shall
postulate that all superselection rules are purely
discrete. This seems realistic: indeed all charges
(electric, baryonic, muonic, * - *), spin type, etc., are
discrete; Bargmann’s superconservation of total mass
in a QGalilei invariant theory® is always treated as a
discrete superselection rule in practice (though the
masses may take arbitrary values) and the gauge
invariance of the BCS model of superconductivity
does not imply a continuous superselection rule, as
was claimed by Emch and Guenin®2; every component
Je(er) (0 £ a < 27) describes the whole system in the
particular gauge o, so that the direct integral of all
the JC(a) is not the space of states (see Sec. VII). We
may thus suppose that the space J€ is a direct sum of
coherent subspaces, in each of which the superposition
principle is fully valid.

B. Choice of the Observables

Up to now we have supposed only that the system
is characterized by the set of its observables, but we
did not say anything about the choice of the particular
observables: What makes the difference between two
systems ?

Let us consider first irreducible systems. Each of
these is described by a separable Hilbert space J¢; and
the corresponding von Neumann algebra £(JC;); but
all these Hilbert spaces are isomorphic, and so are the
algebras £(J€,); they are, in fact, unitarily equivalent.2¢
This would mean that all irreducible systems with any
finite number of degrees of freedom are equivalent;
physically, this is obviously wrong. Thus we must
conclude that the description of a system by the von
Neumann algebra of its observables is not com-
plete.

In the general case a similar conclusion holds. To
two different systems belong isomorphic Hilbert
spaces JC, =~ JC,; their algebras must, of course, not be
isomorphic; but once they are, they are even unitarily
equivalent.?® The structure of the system is, in fact,
given entirely by the spectrum of the single generator
of the Abelian von Neumann algebra G} = 3, corre-
sponding to its supersymmetries: here again the
description is not complete, for unitary equivalence
does not imply physical equivalence!

These considerations clearly show that some im-
portant feature of the theory has been neglected.
The origin of the trouble can be found in the ambigu-
ous meaning of the word observable. This concept has
indeed both a mathematical and a physical aspect,

31y, Bargmann, Ann. Math. (N.Y.) 59, 1 (1954).
32 G. Emch and M. Guenin, J. Math. Phys. 7, 915 (1966).

which have been confused so far. Mathematically, an
observable is defined as a self-adjoint operator.
Physically, an observable is, by definition, the quan-
tity measured in some determined experiment. More

‘precisely, the physical definition of an observable

consists in giving either a prescription for measuring
the quantity itself or a definite expression in terms of
other measurable quantities. In the first case we shall
speak of labeled observables, in the sense of Roberts!?;
a labeled observable is thus a given self-adjoint operator
together with a prescription as how to measure it
physically. In other words, this labeling procedure
provides us with a kind of dictionary,’* a one-to-one
correspondence between some self-adjoint operators
and some particular physical quantities, such as
position, momentum, energy, angular momentum,
etc. This correspondence really defines the system, up
to a physical equivalence (which is also a unitary one,
but the converse is not necessarily true).

The choice of such a family O, = {4;, i€/, I some
index set} of labeled observables may in some respects
be a matter of taste, but it is not completely arbitrary.
First of all, the whole von Neumann algebra O of
observables must be recovered from O;; for this we
require that 97 =0’ and thus 07 =0" =0 (e,
nonlabeled observables appear as functions of
labeled ones). Secondly, we must postulate that O,
contain at least one complete set of commuting
observables (see Sec. II) and all the essential observ-
ables (supersymmetries) of the system. Thirdly, O,
must reflect the symmetry properties of the system in
the following sense. Certain symmetries, like relativity,
play such a fundamental role that no theory could be
formulated at all without them. It is then clear that O,
must contain all the observables in terms of which the
symmetry is defined—in particular, the conserved
observables, if any. Otherwise the description of the
system cannot satisfy the necessary symmetry re-
quirements. In nonrelativistic quantum mechanics,
for instance, the fundamental observables are those
which refer to the physical properties of space-time
and of inertia (through the variational principle),
namely, ¢,, p;. In a similar way, a set of observables
may be equivalent under the symmetry operations
(such as ¢, ¢,, g3 under rotations). Again, O; cannot
contain one member of the set without the other ones;
this would violate the symmetry.

In the seque! we shall present further arguments
supporting the introduction of labeled observables,
and see how they allow us to recover Dirac’s formal-
ism. To the question of which operafors must be
chosen as labeled observables, we hope to return in
another publication.



GENERAL DIRAC FORMALISM. I 57

II. VON NEUMANN’S SPECTRAL THEORY
A. Spectral Decompositions

In view of the results of the preceding section, we
can now restrict our study to an irreducible system or,
what amounts to the same, to a single coherent
subspace. The analysis can be trivially extended to a
general, reducible system with the help of Fubini’s
theorem?!® on successive integrations.

In Dirac’s approach? an observable is a self-adjoint
operator whose eigenvectors form a complete set.
If its spectrum is purely discrete, this condition is
always fulfilled ; but it never is if part of the spectrum
is continuous, since there is no eigenvector in ¥ (i.e.,
a normalizable vector) corresponding to a point of the
continuous spectrum. As a way out of this difficulty
von Neumann? builds the whole quantum theory
using only normalizable wave packets. This approach,
of course, differs from that of Dirac in that it refuses
to go out of J. On the other hand, eigenfunctions (in
the sense of differential equations) can be obtained
very often for peints of the continuous spectrum, and
they may even be perfectly well-behaved functions,
though not square integrable. A way to these ex-
tremely useful elements within Hilbert space theory
can be found in direct integral decompositions of ¥,
introduced also by von Neumann?-?® and systemati-
cally used by Marlow* in a recent work. We shall see
that this formalism, though perfectly adapted for
studying continuous spectra, is still not sufficient for
justifying Dirac’s. As an important step in this
direction, however, it is of great interest.

The theory of direct integrals of Hilbert spaces and
its use for the spectral decompositions of self-adjoint
operators is well known,”26:28 and we shall mention
here only the relevant results. Given a single self-
adjoint operator 4 on X, there exists a corresponding
class of equivalent (spectral) measures on R; with any
element o of this class, a unitary equivalence can be
set up between X and a direct integral Jé, which
diagonalizes 4:

A ®
¥ — 3 = f (3 do(h),

f={f@}, fek, f()eR@),
Af — {Af(%)}, fedomain of 4,

)

(f, e = f (f (), gAY, do(2)
dimJC().)___
=[5, 7@e 4w, ©

where the integrand is the scalar product in J(4). If
A is cyclic (i.e., has a nondegenerate spectrum), all

the spaces JC(4) are one-dimensional and je = L2,
This provides a functional calculus,®® which is nothing
else than the diagonalization of the Abelian von
Neumann algebra U = {4}"; A is the set of functions
u(A4), ueL?, ie., bounded outside a o-negligible
subset of R (diagonal operators); A’ is the set of
decomposable operators B ~ {B(1)}, B(4) e £(¥(4)),
and A < . If 4 is cyclic {dim J(1) = 1 for any 1},
A = WA (maximal Abelian).

The same analysis can be made for a finite or
countably infinite family of strongly commuting self-
adjoint operators A;, A,, - (all spectral projec-
tions commute)®; they generate an Abelian von
Neumann algebra A = {4,, 4, -}", which, in
turn, is generated by one single bounded self-adjoint
operator 4, % = {4}”, according to von Neumann’s
theorem.2® 9 is maximal Abelian (4 cyclic) whenever
{A;, A5, -} is a “‘complete set of commuting
observables.” 1

The physical interpretation of these decompositions
is obvious. A is represented in the component J¢(4)
by the multiplication operator 1; J¢(1) must then be
interpreted as an eigenspace corresponding to the
eigenvalue A. These eigenspaces are even orthogonal
in the sense of Parseval’s relation:

112 = f 1F)2 do(h). @

A similar interpretation holds for the operators 4,,
Ay, -+ -. But the trouble comes from the fact that
J(4) is not a subspace of Jif Ais a point of o-measure
zero, because any element f of J€, whose only non-
vanishing component is f(2), has zero norm in 3. Thus
we cannot treat all eigenvectors, the discrete and the
continuous ones, on the same footing; but this is
precisely the essence of Dirac’s formalism, which gives
it its superiority from the practical point of view.

Let us now introduce! a basis {|A,n), n=1,
2, -, dim JX(A)} in JE(A) [the notation |.) instead of
|.y shall remind us that | (1)), |4, #) ¢ ]. In Dirac’s
notation we find that

@D | gDy =2 (fD) | 4, n)(A, n | g(B)-

Now Marlow writes

)= CGon| f()= 4 n|f),
such that

(flg) = f S| A n)(d, | g) do(h).

But this relation is not equivalent to the similar one of
Dirac because (4, n |f) does not represent the scalar

)

33 J. M. Jauch and B. Misra, Helv. Phys. Acta 38 (1965).
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product of two elements of JX; it is a symbolic ex-
pression representing the scalar product (4, n | f(2)) in
JC(A)! There is for instance no possibility at all for
inserting between (4, n| and |f) the identity operator
of X in its usual form (“‘complete set of states™):

I =f§ |4, 1) (4, n| do(R)
- f 1) do(3),

where I(4) is the identity operator in JC(4). We see
here that this formalism, although presenting a con-
siderable improvement over the usual one, still suffers
from insufficiencies, which we shall now analyze.

B. Difficulties of this Formalism

A first difficulty, already mentioned above, is due
to the fact that J(4) is not a subspace of X if 1 belongs
to the continuous part of the spectrum. Therefore such
eigenvectors cannot be interpreted as pure states of
the system. But then the question arises: What is
their physical interpretation at all? Furthermore,
the connection between f'€ J and its components is
rather loose (measure theoretical); there is no straight-
forward generalization of the projection operator
f— f(n) of the discrete case. One possibility would be
to consider f,(4) as the value which some linear
functional takes at the element f. This is suggested by
Marlow’s notation f,(4) = (4, n| f). In other words,
(2, n| should be considered as a distribution.”1° But
there appears now another major difficulty, for the
functional f— f,(4) is not continuous under the
topology of X, if the set {4} is of o-measure zero!

An analogous difficulty appears if one tries to
represent nondiagonal operators. Let 4 be an observ-
able, which, for simplicity, we assume to be cyclic,
and {&} a representation in which 4 is not diagonal.
Given f~ {f(&)}, g = Af ~ {g(&)}, Marlow* remarks
that the function g(é) is a linear functional of the
function f(&) and he writes this property in the
following way34:

&) = (¢|g) = f (E| A 1E)S(E) du(E).

This relation is meaningful if 4 is an integral operator
in the {&} representation, of Hilbert-Schmidt type say,
with the kernel 4(&, &) = (§| 4 |&"). But this is by
no means always true! Here also we cannot use the
theory of distributions, for the functional g[f]is not
continuous if 4 is unbounded. In the same way
Marlow uses the following integral representation for

34 A similar relation can be written with two different representa-
tions {£} and {4}.

a matrix element of A(h, f'c J€):
hlALf) = f f (€] A |EYEF(E) du(E) du(&).

But here again A can be interpreted as a kernel in the
sense of Schwartz”-1° and have such a representation
only if the left-hand side is a separately continuous
bilinear (or Hermitian) functional of # and f. To
overcome this difficulty, it will be necessary to make
the operator 4 continuous by restricting it to an
invariant dense domain in which a suitable new
topology is defined (one finer than that of J€). But,
of course, this will not be possible for all observables
simultaneously, if only because of the requirement of
the common dense domain! Here again we are faced
with the problem of selecting a family of labeled
observables.

A further difficulty connected with the von Neu-
mann-Marlow formalism stems from the change of a
representation. We saw that fixing a representation is
equivalent to choosing a particular maximal Abelian
von Neumann subalgebra of £(JC). But it is known3
that £(J) contains maximal Abelian subalgebras
which are not unitarily equivalent to each other.
Moreover, each of them may be generated by a single
operator, so that the usual notion of dimension does
not apply to such a subalgebra. Yet it is used implicitly,
as the number of degrees of freedom of the system.
An answer to this puzzle may be given as follows.
The number of degrees of freedom is a purely classical
concept, which can be transferred to quantum
mechanics through canonical quantization.’* This
procedure uses the correspondence principle for
identifying a classical dynamical variable with a self-
adjoint operator. [Reference to classical mechanics
cannot be avoided, for a measurement apparatus is,
in general, a classical (macroscopic) object!] Of
course, not all quantum observables can be obtained
in this way, but it must be emphasized that neither is
this applicable to a// classical dynamical variables,3
if one wishes to maintain correspondence between the
commutator and Poisson bracket.?” A choice has to
be made among the dynamical variables; this is
equivalent to the labeling of observables which we
have already met several times. Thus the only ad-
missible maximal Abelian von Neumann subalgebras
of £(X) are those generated by labeled observables

35 J. Dixmier, Ann. Math. (N.Y.) 59, 279 (1954).

36 Even in classical mechanics, not all reasonable (e.g., twice
differentiable) functions of g¢;, p; can be dynamical variables; a
Hamiltonian, for instance, can, in general, be at most a quadratic
form in the canonical momenta p,; otherwise, one runs into serious
difficulties.

37 R, Arens and D. Babbitt, J. Math. Phys. 6, 1071 (1965).
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(the generator of such an algebra has, in general, no
obvious physical meaning); for these, the number of
operators can play the role of a dimension number;
it is related to the number of degrees of freedom of the
corresponding classical system (this one exists at least
partially). Given two such physically meaningful
representations {1’} and {A'"}, with corresponding
spectral measures o; and o;, the transformation from
the one to the other is described by a unitary equiv-
alence between Lii and L2, and this causes the
same difficulty as the representation of nondiagonal
operators did—for instance, Dirac’s relation

|20y =f|/1u)> G | 29y do (A

has no meaning here, since |A”) and [’} do not
belong to ¥, and their scalar product is not defined.
Of course this unitary equivalence between Hilbert
spaces does not imply that the corresponding maximal
Abelian algebras A and A"’ will be unitarily equiv-
alent. If they are, the change of representation
becomes rather trivial.3®

In conclusion, we may say that this formalism
gives a correct treatment of continuous spectra, but
that there remain difficulties due to the unbounded
character of observables and to the necessity of
choosing a family of privileged (labeled) observables.
In the following sections we shall try to remedy these
defects.

III. MATHEMATICAL ASPECTS OF THE
PROBLEM
A. Preliminaries

The spectral theory of observables is part of a much
larger mathematical problem, namely, the spectral
theory of symmetric and normal operators in Hilbert
space and, in particular, the problem of differential
and partial differential operators, their eigenfunctions,
and the expansion of arbitrary functions in terms of
these eigenfunctions. Two main directions (both
leading out of J) have been followed.

1. Use of Direct Integral Decompositions

This method arose from the “Reduction Theory”
of von Neumann® and was developed further by
authors like Mautner, Browder, Garding, etc. (see
the references in Gel’fand’s book?); we have outlined
it in Sec. Il and pointed out its inconveniences.

2. Use of Supplementary Topological Structures
in  (Mainly Nuclear)

This second method, first proposed by Gel’fand and
Kostiuchenko, was developed mostly by Russian

38 J. M. Jauch and J.-P. Marchand, Helv. Phys. Acta 39, 325
(1966).

authors? (Gel'fand, Chilov, Vilenkin, Berezanski,
Katz, Maurin, etc.). The idea is to build a mathemati-
cal structure that remedies the defects analyzed
above:

(i) The functional f— f(4), arising in the direct
integral decomposition of J¢ with respect to 4, can be
made continuous on a subspace ® < J€ endowed with
a suitable, finer, topology; we shall write $(1) =
(&,,¢) for $c®, £, €d’, the strong dual of @
(i.e., the space of continuous linear functionals over
®, provided with the strong topology).

(if) If @ is dense in ¥, and if the injection @ — i€
is continuous, we can embed J (densely) in @'; the
result is then the following triplet structure:

O NN A (1 18 (6)

If, moreover, the operator A4 leaves @ invariant and is
continuous under its topology, duality between @,
@’ allows us to define an extension A’ which is a
continuous operator on ®":

A&, ¢) = (&, A9),

and the functionals &, defined in (i) above are eigen-
functionals of 4’, i.e.,

(Alfla ¢> = <5).’ A¢> = l<(£,1’ ¢>>

or, for short,

ded, fed’ @)

Véed, (8)

A, = A¢;.

This method has been studied in great detail by
Gel’fand et al.,” Foias,)! Maurin,!? and recently by
Roberts.’* We shall follow it (except for some minor
modifications) and see how it enables us to reproduce
Dirac’s formalism. The mathematical probiem, then,
is the following: Given an observable A4, to construct
a space © endowed with the following properties:

(i) @ can be identified with a dense subspace of X,
stable under 4, and its topology must be such that 4
is continuous under it;

(ii) the embedding ® — X is continuous, so that a
triplet (6) can be built and 4 can be extended to 4’;

(iii) @’ contains a complete orthonormal system of
eigenfunctionals of A'.

Here complete means that any element of ® admits an
expansion in eigenfunctionals which is unique, and
orthonormal means that this expansion satisfies a
Parseval relation (there is no scalar product in @'!).
Finally, this construction must first be applied to a
whole family of compatible observables, then also to
noncompatible observables.

It must be emphasized that the problem has two
very different aspects.
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a. Topological Properties of ®: ® must be a stable
subspace of the domain of all operators to be made
continuous; its topology will depend on their number
and their (un)bounded character. It can be a norm
topology (— Banach space), a metrizable topology
(— Fréchet space), or even a nonmetrizable topology
(i.e., with a noncountable base of neighborhoods).

b. Properties of the Embedding Mapping v:® — JC:
It must allow the existence of the required spectral
decompositions.

B. Survey of Mathematical Results

The problem just described has been studied
already in several works, which we shall review here
briefly.

1. The Solution of Gel’fand-Chilov®

These authors extend the original idea of Gel’fand-
Kostiuchenko, based on differentiability properties of
functionals of bounded variation over nuclear topo-
logical vector spaces. Their method, although elegant,
is not very useful for practical applications. This
approach is very close to that of von Neumann?
and Marlow.*

2. The Solution of Foias!

Instead of direct integrals of Hilbert spaces, this
author uses continuous linear mappings from @ into
®*, the space of continuous antilinear functionals over
@, and he defines the concept of an integral decom-
position of @ in terms of eigenoperators of A. This
method has been studied systematically by Roberts.3

3. The Solution of Hirschfeld*

This is by far the simplest method; it uses only the
spectral theorem in J¢.22 In the case of a single bounded
operator A, ® is the Banach space (thus nof nuclear)
of continuous functions on the spectrum of 4. How-
ever, the extension of this method to unbounded
operators does not seem straightforward in its present
form; for this reason we are forced to abandon it, at
least provisionally.

4. The Solution of Maurin'? and of
Gel’fand-Vilenkin®

This last solution combines in fact the two different
approaches outlined at the beginning of this section.
The idea is to build a triplet ® < ¥ < @', to decom-
pose X into a direct integral, and then to embed each

39 Reference 7, Vol. IIL

40 R, A. Hirschfeld, Indag. Math. 27, 513 (1965) and private
communication.

41 Reference 7, Vol. IV. The spectral theorem, proved somewhat
loosely in this volume, has been corrected by Roberts'® and Gould
[J. London Math. Soc. 43, 745 (1968)].

component continuously into ®’. This method has
the advantage of using explicitly direct integral
decompositions of J; as we have seen above (Sec. II),
this is a very convenient language for spectral theory
of operators in a Hilbert space; furthermore, it
appears automatically in the study of symmetry
groups (or algebras) through the decomposition of a
representation into its irreducible constituents (cf. a
forthcoming article). For these reasons we shall
adopt this approach in the following. But we note that
it is completely equivalent to the method of Foias.
Therefore we shall be justified in borrowing several
elements also from the latter.

Before we pass to the construction of Dirac’s
formalism, we shall state the mathematical results of
the Maurin-Gel’fand—Vilenkin analysis. The key of
their method is the following fundamental lemma,
due to Garding'* (for further details, see also
Roberts!?):

Lemma: Let @ be a locally convex topological
vector space®? with a nuclear embedding into a

"Hilbert space, ® — X; let

A @
k- = f 3(A) du(2)

be an isometric mapping of J€ onto a direct integral
(thus the embedding ® — J€ is nuclear too); then the

mapping
¢ —>d(), €@, () ekl

is continuous and nuclear for every 4 except on a
fixed set A, of u-measure zero, independent of ¢.

The mapping 7, being nuclear, for any ¢ € ® we may
write

with ¢’ (1) € ®" and a basis

(h, (), n=1,2,---,dim JE(A)}
of J(2). This relation is valid for any A4 if 7, is
put equal to zero on the exceptional set A,y . Moreover,
the dual mapping 73:5(4) — @’ is continuous and

allows us to identify each vector & of JE(4) with a
functional £ of @’ through the following equalities

(e D):
<"§3 ¢> = (55 ¢(}'))l = (E’ 7'/1?3)/1 = <Tﬁ'§? ¢>
With help of this lemma the spectral theorem of

42 F, Treves, Topological Vector Spaces, Distributions and Kernels
(Academic Press Inc., New York, 1967).
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Maurin-Gel’fand-Vilenkin may now be stated as
follows:

Theorem: Let A be a self-adjoint operator in
Je; let J&— 3¢ = [P I(2) du(4), the corresponding
integral decomposition; and let @ be as in the lemma.

Then:
1. The functionals ¢/ (1) defined by the lemma form
a complete orthonormal system (¢, ¢ € ®):

(6, v) = f (B(2), p(A), du(h)

dim J€(4)

= gl (Dn(A), BX( (A, W) du().

2. If A leaves @ invariant and is continuous under
the topology of @, ¢, (4) is for every 4 and every # an
eigenfunctional of 4’, the extension of 4 to @':

A'G(A) = AdL(A), n=1,2--dim FA).

3. The same results hold true for a countable family
of strongly commuting operators.

This spectral theorem satisfies all the conditions of
Dirac. Moreover, the operator x, = 7;7,, which is a
nuclear operator mapping @ into @', acts as a projec-
tion operator onto the eigensubspace @) < @',
corresponding to the eigenvalue A. But it must be
noted that the operator A’, the extension of 4 to @',
may very well have eigenvalues which do not belong to
the Hilbert space spectrum of A (this property has
been emphasized by Roberts!?; it stems from the mere
fact that 4’ has a larger domain of definition than 4).
However, these supplementary eigenvalues are de-
prived of any physical significance, for probabilities
are defined in ¥ only. Accordingly, the spectral
decomposition of JC selects precisely those eigenvalues
of A" which form the Hilbert space spectrum of A.
(This partly justifies the explicit use of direct integrals.)
For this reason, we shall discard these nonphysical
eigenvalues throughout the rest of the work.

C. Physical Remarks

We know from Secs. I and 1I that a physical system
is defined by a family of labeled observables, rep-
resented by self-adjoint operators. Now we must
build a space @ such that the general spectral theorem
applies to these observables. Let us consider first a
family of commuting operators. The theorem requires
that @ shall be contained in the domain of each
member of the family, that it be stable under all of
them, and that it be dense in JC. In other words, the
family of operators must have a common dense in-

variant domain D in JC.*** Then the space @ is obtained
simply by introducing into D a suitable new topology
and completing it under this topology. Such (nuclear)
topologies have been explicitly constructed by Foias*
and Maurin.** But we need more; any observable,
and, in particular, any labeled observable, can belong
to a complete system of commuting observables.
Thus, if we want the space ® to be characteristic of the
whole system and not only of a particular representa-
tion, we must require that the same space ® shall
work for all labeled observables; this will enable us
to represent nondiagonal operators also, to formulate
a transformation theory, and to give a reasonable
physical interpretation of the formalism. These con-
siderations, together with the results of Sec. I, may
now be collected in the following definition'3:

“An irreducible physical system is determined by an
irreducible family O; of (labeled) self-adjoint operators
in a complex separable Hilbert space J, with a
common invariant dense domain O and containing at
least one complete Abelian system.”

The irreducibility condition ensures that the family
Oy is sufficient to generate the von Neumann algebra
of all (bounded) observables:

0, =0 = {ul}; 05=0"=0 =)

It also entails the existence of at least one maximal
Abelian von Neumann subalgebra,®® but we must
require, in addition, that this algebra be generated by
labeled observables (see Sec. I1). From the existence of
the domain 9, it follows that the restriction ©9 of O,
to D generates an algebra of operators with a unit
(the restriction to D of the identity operator of ¥);
sums and products of its elements can be performed
without consideration of domains (which causes much
trouble in JC); this point was emphasized by Roberts.!3

Having now the domain D at our disposal, we must
endow it with a suitable topology. The minimal con-
ditions are the following:

1. All operators of O, shall be continuous on P;
therefore the topology shall be finer than the one
induced by J;

2. The embedding ® — 3 shall be a nuclear
mapping.

We shall see below, however, that it is very useful to
replace 2 by the stronger condition:

2'. ®@ shall be a nuclear space, and the embedding
® — X shall be continuous.

422 Such a domain D always exists for a family of commuting
observables, but this is no longer true in the general case.
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Roberts™® has given a general and canonical solution
to this problem, simply by requiring the coarsest
topology satisfying condition 1 (which is, of course,
the most economical solution); but he has then to
check explicitly that this topology is nuclear (it is so
indeed in most elementary situations). Nevertheless,
this canonical solution is not necessarily the best one
for practical purposes; much benefit can be gained by
taking for @ a well-known “‘test-function” space,”9-10
such as D(R"), D(Q) (Q open set of R” or C¥
manifold), 8, K(M,), etc., because the general form
of a continuous functional over any of those spaces is
known. Of course, for a justification of the abstract
formalism, the bare existence of at least one space @
is sufficient, but for studying practical problems, one
must choose a concrete realization of @ as a space
of functions, just as one usually does with J€. Since
the aim of the present formalism is the simplification
of the theory, we prefer to take @ as simple as possible,
and this excludes any canonical and abstract solution,
however elegant it may be. At the same time, the
structure of @ shall reflect, as much as possible, the
characteristics of the system. This principle is central
in our analysis and it will guide us throughout this
work. In particular, it is essential to take care of the
symmetry properties of the system from the start, by
requiring that @ be invariant under all symmetry
operations. This will ensure consistency of the theory
and also makes it simpler. We shall come back to this
point in a forthcoming article.

1IV. DIRAC FORMALISM FOR AN IRREDUC-
IBLE QUANTUM SYSTEM

A. Construction of the Triplet Space and Notations

Let {4;,j e} be a family of labeled observables
characterizing an irreducible physical system as
described in Sec. I1I. In the corresponding domain
D, we define a nuclear topology with all required
properties. We then obtain the triplet

i@,

where @ is complete and nuclear, thus reflexive’
(®" = ®) and dense in J; the injection mapping
7:® — ¥ is continuous, and so is the dual mapping
7/:3¢ — @', which maps & on a dense subspace of
@’ (dense in the sense of sequential convergence!?).
If the family {4,} is countable, ® can be taken to be a
nuclear Fréchet space'®; that is, @ is the projective
limit® (“intersection” in the language of Gel’fand et
al”) of a decreasing sequence of Hilbert spaces @,
corresponding to an increasing sequence of nonde-
generate scalar products, @, being the completion of
® with respect to the scalar product (-, -), (or the

O

corresponding norm |-],). Similarly, @’ is the
inductive limit® (“‘union”) of the respective dual
spaces @7 . In other words, the triplet (6) is a rigged
Hilbert space, in the sense of Gel’'fand et al.,** whose
structure can be represented as follows:

® =limproj@, < -+ S P <, = D
n=1,2+--
=P c®c - @ =limind®,. (9

n=1,2-"-

In this scheme we use the following definitions: ket
vecfors, the elements of @, denoted [¢), [9), - -;
normalizable vectors, the elements of J¢, denoted f,
g, '+, with the scalar product (f [ £); bra vectors, the
elements of @, denoted (¢'], (¥'|---. Thus we
recover Dirac’s language, except that we have now
many more bras than kets (Roberts!® interchanges ©
and @’ in this interpretation; this is, of course, a
matter of taste, but our convention coincides with
Dirac’s, who calls “representation” a complete set
of eigenbras). The injection 7'r from @ into @’ is
called y; it is an antilinear operator:

¢’=7§[’, <¢'|=71¢>’ qSE(D, ‘#eq)’-

If (-|-) denotes the bilinear form expressing the
duality between ® and @', we normalize it in such a
way that the following relation holds for any ¢,
pe®:

ie.,

@)= Q| = (w]|$. (10)

Finally, given a continuous linear operator 4 from @
into @, we define the following: A’ as its adjoint, a
continuous linear operator from @’ into ®'; 4 = yA
as its continuous extension to £X(®, @), the space of
continuous antilinear mappings from ® into @’; also
by A we denote its self-adjoint extension to J& when
it exists. (We do not need a new symbol, since the form
of the parentheses tells whether 4 acts in ® or in J.)
Then, for any ¢, p € @, we can write

(9| A |$) = (' | 4d) = (A'y' | ¢).

Note that adjunction is an antilinear operation:

(an

, A
(A4)Y = A4’ and (Ad4) = 4
(4 any complex number).

B. Choice of a Representation

Let us consider now a complete system of com-
patible labeled observables {D,,j=1,2---};such a
system exists by hypothesis. This system {D,} induces
an integral decomposition of X into one-dimensional
spaces J¢(A) (A denotes the set 4;, 4, * - - of eigenvalues
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of D,, D,- ), as in Sec. II:
@
% = j 3() du(h),

9= f The() du(h),
D,f~{Af(D}, j=1,2---, fedomainof D;.

This decomposition of J¢, in turn, induces an integral
decomposition of @ by nuclear operators y; from
£X(®, @), which are eigenoperators*?? of D;:

(¢Iw)=f<xa¢lw>du(?t), ¢, ped
with
(b | vy = (4| $XA | v,
(A #) = (),

where (1| € @' is a simultaneous eigenfunctional of all
the D;,]= 1’2. e

(12)

(Al D= (DAl = A; {4, =12

Following Schwartz!® and Gel’'fand et al.,” we shall
denote in this {4} representation the elements of @'
as functions of A, whether they are true functions or
only generalized functions (e.g., distributions)

& = f EDSD) du(h), & e, e,
in the same way as we have for ¢, y € ®:

Wl d == f YD) dud.
In particular,
Ao(4) = 610(1) = 0(4 — o)
(with respect to the measure u).
Similarly the kernels, i.e., elements of (D ® @)’ 420

the dual of the projective tensor product,®4? will be
represented as integral operators:

(F|$ey) = f f F(, 2)$(R)p(X) du(A) du(2),
Fe(@&dy, ¢, ped.
C. Eigenvalue Equations

In virtue of the general spectral theorem (Sec.
IIIB), every labeled observable—and, more generally,

420 Strictly speaking, this definition is valid only for a Fréchet
space. In the general case, a kernel must be defined as follows. The
elements of @ are usually C© functions on some C® manifold,
Q say: @ = ®Q). Then a kernel over ®((}) is an element of
D(Q2 x ), and this space may be strictly larger than (®(2) &
O(QY)) if @ is not Fréchet.

any member of the algebra generated by labeled
observables—admits in @' a complete orthonormal
system of eigenfunctionals. Let 4 be such an ob-
servable; it also induces a direct integral decomposi-
tion of J¢, which reads as follows:

@
=1 K& (),

Srd

(/]9 = j (78 | &6, do(e),

= f S Tol® gal®) do(®), (13)

and similarly for the elements of @, with the further
properties

$ (&) =& m|¢), ded, (& mled,
m=1,2--dimJ(¥),
(E,m| A" = E(& ml, (14

b 9) = (HO [ 9, b ye?,

dim JC(¢)

= > (Em|eEm]|y).

m=1

The orthonormality is given by the Parseval equality

141 = f S (& m | B du(é). (15)

These abstract relations can be realized in any given
representation, say {A}. With the convention stated
above, the functional (&, m| is now represented by a
generalized function £,(4), so that (14) can be
written in the usual form:

A&, =E6,(), m=1,2---dimJ(&). (16)

We thus obtain an eigenvalue equation in ®’, not in X.
This allows us to use the theory of differential and
partial differential equations with its full power;
indeed, many eigenvalue equations of this type admit
solutions which are not true functions, but only
distributions: these could not be accepted in the usual
theory, at least not without a supplementary apparatus
by which the theory loses its simplicity and trans-
parency. Here, however, they can. But, of course, 4’
is not necessarily a (partial) differential operator in
any representation! This also makes more precise the
nature of the nonnormalizable solutions of the
eigenvalue equations of elementary quantum me-
chanics: they should be interpreted simply as elements
of the corresponding @’. It must be noticed, however,
that the eigenvalue equation alone, if not looked at
from the point of view of the spectral decomposition,
may lead to extra solutions which do not correspond
to points of the Hilbert-space spectrum (see Sec.
ITIIB). These, of course, must be rejected!
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D. Matrix Elements of an Operator

First we remark that ® and @, its complex con-
jugate space,'® have the same topological properties;
for instance, ® is nuclear whenever ® is. Moreover,
the following identity holds:

(@, @) = £, D),

which says that a Hermitian form in ¢, y can be
considered as bilinear in $, y. We shall now suppose
that @ is a Fréchet space (metrizable topology). This
is sufficient for all practical applications (systems
defined by a countable set of labeled observables),
except for field theory. The general case will be studied
elsewhere.

Being both nuclear and Fréchet, @ satisfies a
refined version of Schwartz’s nuclear theorem (kernel
theorem). We shall use it under the two following
forms.*

(a) Any continuous, antilinear mapping from ® into
@’ defines a Hermitian kernel over @ and vice versa:
LX(D, ') = (D & D)

both algebraically and topologically.

(b) For any bilinear form b(¢, h), pc®@, he X,
separately continuous over ® x JC, there exists a
norm |||, over ® and a Hilbert-Schmidt operator B
from @, into J¢’' such that b(¢, k) = (B¢ | h).

It is now straightforward to apply this theorem to
observables of the following classes (which do
overlap):

1. Labeled Observables or Elements of the Algebra
That They Generate

These are continuous operators from ® to @; with
the form (a) of the theorem, we have for any ¢, y € @,
in the {4} representation,

(4 Bly) = B | v)
= f f B(A, XYk du(h) du().

2. Bounded Observables

That means continuous operators from J€ to J; the
form (b) gives for any ¢ € @, he X,

(4| B k) = f f B(, X)FORC) du(’) du(d).

43 The form (a) stems from the original form of Schwartz [see Ref.
42 and also L. Gérding and J. L. Lions, Nuovo Cimento Suppl. 14,
9 (1959)]. The form (b) is the analog of the theorem given by
Gel’'fand and Vilenkin.#! These authors prove it for the case of
countably-Hilbert spaces, but it is well-known that every nuclear
Fréchet space is countably-Hilbert.®! If we do not suppose that
® = P(Q)*2b is Fréchet, the nuclear theorem reads:

(® B DY € PQ x Q) =D, D).
If @ is Fréchet, the three spaces coincide.

3. Continuous Observables

That is, more generally, continuous operators from
® to X, thus from @ into @’ (this class contains the
two other ones):

(Bb| ) = f f B, AYER () du(7) du().

For any continuous observable B, in particular, for a
labeled or bounded observable, we can give in this
way a meaning to the matrix elements (1| B|A") of
Dirac’s formalism: they appear here as the “‘values”
B(4, 2’) of the corresponding kernel, written in the
{A} representation. But such an interpretation is not
possible for observables which are not continuous from
@ into J. Moreover, if 4 and B belong to the algebra
generated by labeled observables, their product does
so too (by definition) and the same is true for the
corresponding kernels; in the {1} representation this
gives (exactly as with integral operators)

(AB)(2, X) = f AA, ANBO", XY du(A”). (17)

Among the kernels obtained by application of the
nuclear theorem, those which correspond to decom-
posable operators (observables commuting with the
D,’s) admit an integral decomposition of the following
form:

B = [, duh;
or, more precisely,
GBIy = Bp|y) = [Big| 9 dud. ¢,y e,
where B, is an eigenkernel'? of the D’s, i.e.,

DB, = B,D;=b(M)D;, j=1,2---
{b(2) = scalar function}.

In particular, the operator y itself decomposes into
the eigenkernels y; introduced above,!

y = [ duh. (18)
In the {£&} representation, this becomes
PO =[neOwm. 09

where, by definition,
f 5(E — E)YEWE) (&) d(&) = f FEWE) du(e).

[This relation is just Eq. (10) written in the {£} repre-
sentation.] Relations (18)-(19) coincide with the
so called closure relation,® which expresses the com-
pleteness of the system of eigenvectors.
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E. Transformation Theory

Given two representations {4} and {&}, we have
(4, p e D):

D) = Gud | v
= f (& EYBDPE) do(&) dn(E).

Similarly,
$y =] = f HEYH(E) dr (&),

Of course, A(£) may be only a generalized function.
If it is a true function, one can prove the usual
identity

A(€) = &(A).

But it must be emphasized that (20) does not come
from the Hermiticity property of a scalar product
(A | &), because no such scalar product exists; this is
why Eq. (20) does rot always have a meaning.

(20)

To sum up: we have reproduced the main features
of Dirac’s formalism by using a nuclear space ®
together with the convention that the generalized
functions are written exactly as true functions, and
Schwartz kernels as true integral operators. All of this
becomes particularly simple in the case of the {x} and
{p} representations: the spectral measure reduces to
Lebesgue measure and we recover the usual theory of
distributions over R” For instance,

—iDX

p(x) = 7%,
5(x - =feip(w—u) dp.

This last relation expresses the completeness property
(19) of the eigenfunctionals of p (apart from complex
conjugation). It may be useful to point out here that
the three different meanings of the usual  functions are
a]l reproduced:

1. d(x — x) is the matrix element of the unit oper-
ator in the {x} representation, represented here
(apart from a complex conjugation) by » and its
corresponding kernel (18)-(19);

2. 8(x — x') is the eigenfunction of the operator x,
represented here by the eigenfunctional (x'| in the
{x} representation (see Sec. IVB);

3. 6(x — x) appears as the normalization factor
(scalar product) of the eigenfunctions of x; this is
equivalent to the Parseval identity (15).

Note: We have considered an irreducible system
only. The generalization to the case of discrete
superselection rules J& = @, ), is obvious: For each

n, we take ®, < ¥, < @ and then construct a big
(nuclear) space © with all the @, , e.g., as a topological
direct sum or a topological product.® In the case of
continuous superselection rules, we can obtain an
integral decomposition of the three spaces ®, J€, and
®’ by requiring that the essential observables be
natural operators of ®, in the sense of Foias,™ ie.,
operators which are Hermitian with respect to all
the countable scalar products (-, -), of ®. However,
this case seems to have an academic interest only
(cf. Sec. I) so that we shall not go into further details.

V. THE TEMPORAL EVOLUTION AND THE
WAVE EQUATION
Up to now we have described the system at a fixed
time 7, only; we must now consider its evolution in
time. Let us start in the Schrddinger picture with the
evolution equation®

Sfe= UG, to)fto, ftOEJes
where U(t, t,) is postulated to be a unitary operator,
with the group property

Ulty, ) U(ty, 1) = Ult,, to),
U(ty, tg) = 1. 21)

In the case of an isolated system, U(#,, ¢,) depends on
the difference (#; — f,) only, so that the operators
V(t) = U(t, 0) constitute a one-parameter group of
unitary operators, which can be made continuous by a
suitable choice of phases.>?® Stone’s theorem?® then
says that this one-parameter group has a self-adjoint
infinitesimal generator H:

V(t) = exp (—iHt),
i(8/onV(t) = HV(¢).

Identifying H with the total Hamiltonian as usual, we
get the time-dependent Schrodinger equation:

i(3/an)f, = H,. (22)

In the general case of a nonisolated system, one has
to postulate the existence and the self-adjointness of
an operator H(¢) such that

i(a/at)U(t19 to) = H(t)U(tu to)‘

(This appears as a presymmetry in the sense of
Ekstein.*) Again supposing that this H(t) represents
the total energy, we recover Schrddinger’s equation:

i(8/o0)f, = H(Yf,. (23)

Let us come back to our formalism now. We stick
to the principle stated in Sec. IIIC, namely, the space
® itself must characterize the system as much as

44 H. Ekstein, Phys. Rev. 153, 1397 (1967).



66 J.-P. ANTOINE

possible. In the present case, this means that ® shall
describe the whole history of the system, not only
its behavior at a fixed time f,. This leads to the
following:

Postulate: If ® characterizes the system at time £y,
it is required that

U(t, ty)® = @ for any .

This requirement looks very reasonable, for it ensures
that the triplet space ® < J < @’ describes the
system in an intrinsic way. But, with the physical
interpretation we shall present in the next section, the
postulate will appear as an essential consistency
condition of the theory® (cf. Sec. IIIC).

As an immediate consequence, we have H(1)0 < @
for any t; what leads us to include the total Hamil-
tonian among the labeled observables [continuity of
H(t) under the topology of ® will be achieved in the
explicit construction (cf. a forthcoming article); here
it is postulated]. From this it follows that Schrédinger’s
equation [(22) or (23)] is valid in @, and thus in @',
But it must be emphasized that this concerns the
time-dependent equation only, since the (time-inde-
pendent) eigenvalue equation of the Hamiltonian
admits in the continuous case solutions in @ only.
As a trivial example, consider a nonrelativistic free
particle: the eigenfunctional corresponding to momen-
tum p is the planewave exp (ip - x), which belongs to
®' = §’,'% whereas the time-dependent equation
admits solutions of the type

f06, 1) = f dpJp) exp (ip - x — ip'tf2m),

which can also belong to ® = 8 or X = L?, according
to the properties of f(p).

The same postulate also ensures that the description
of the system by the space ® is valid in the Heisenberg
picture, too, the transition being effected precisely by
the time evolution operator. Similarly, it allows
Dirac’s construction! of the quantum-action function
in order to justify the classical limit of the theory.
Indeed, the operator U(ty,f,), which belongs to
£(®, ®), may be identified with a kernel:

<q| U(tl H to) 'q,>Dirac = [U(tla to)](q’ q’)

The group property (21) then allows us to write the
product of these kernels:

[, ), ¢) = f f e f [UG, )19, 401U, )]

X (41, q2) - U, 1)(qm» 9" dulqy) - - - dulq ).

45 The same postulate will be extended later to any symmetry
group.

VI. PROBABILISTIC INTERPRETATION
A. Reformulation of the Usual Interpretation

We have given a precise mathematical meaning to
Dirac’s formalism, but at the price of introducing the
new elements ®, @', and we must now investigate
their physical significance. Let us start with the
general probabilistic interpretation outlined in Sec. I.
Given a question Q and a state /, the probability of
getting a positive answer for that state is given by the
expectation value of the corresponding projection
operator QF:

Prob (Q, h) = (h, Q%h).

Now let 4 be an observable, {4} a representation in
which A4 is diagonal, E3! the projection operator on the
subset A of the spectrum of 4. We have

(h, Edh) = fA d(h, E£h)

= f IA(A)[? duu(A),
A

i.e., the probability that 4 shall have, in the state /, a
value between A and A + dA is given by |A(4))2 du(4),
where du(A) = u(4, 2 + d2). In Dirac’s language this
quantity reads |(4 | #)|2 d4 and leads to the concept of
a transition probability amplitude, represented by the
scalar product (4 | k).

Now, if 4 is a point of the continuous spectrum of
A, (4] belongs only to @, and Dirac’s interpretation
is not possible anymore unless 4 € X is an element of
O (precisely & = 7¢, with ¢ € @); in this case, we
indeed have

() = (1] $).

For such a pair 4, ¢ we can thus write a probability
amplitude. For interpreting it physically, we shall
follow the analogy of Feynman’s theory of path
integrals.4® His argument may be outlined (somewhat
naively) as follows. Let the history of the system be
represented by some path in space-time, and consider
for some fixed time ¢ two portions of this history
corresponding to regions R’ (t' < t)and R" (t" > 1),
respectively; then the transition probability amplitude
from R’ to R” is given by

Ampl (R, R") = f 705 Dw(x, 1) dx

= (x| .

In this expression w(x, t) is a wavefunction describing
the history of the system up to time ¢, i.e., the prepared

46 R. P. Feynman, Rev. Mod. Phys. 20, 267 (1948).
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system at time #; x(x, ) is a wavefunction describing
the future of the system, that is, the possible experi-
ments to which it can be subjected at times later than
t. Moreover, both wavefunctions satisfy a Schrédinger
evolution equation. If one identifies such an experi-
ment (question) with the (unique) state in which it
gives a positive answer with certitude, then y(x,t)
represents a state in which the system may jump, and
we come back to the usual interpretation of the
probability amplitude (scalar product in ¥).*

The class of states y is normally assumed to be
identical with the class of states u, but this requires
x to be normalizable. If we drop this restriction, we
have a situation (already mentioned by Feynman?® in
a footnote) in which the two classes are not identical
anymore: to some experiments correspond “idealized”
states y, in which the system cannot be, i.e., states
which cannot be prepared. With this idea in mind,
we shall now give the following interpretation to the
“triplet” formalism: @ represents the class of physical
states which can be prepared; the preparation of the
system must then be described by a kind of projection
on ®; on the other hand, @' represents all the po-
tential experiments which can be performed on the
system or, equivalently, the possible measurement
instruments. The corresponding states may be non-
physical or idealized, i.e., represented by an un-
normalizable vector. This interpretation is quite
intuitive, for the concept of functional is very close to
that of experiment. A measurement on the system can
be defined as an operation which associates a numberto
each state of the system, i.e., a functional! Take for
instance the eigenfunctional (4¢| of 4; it corresponds
to the question, “What is the probability that 4 takes
the value 4, in a given state 7”” More precisely:

1. If A, belongs to the discrete spectrum, there
exists a true state in which the answer is 1: (4, ] 4,) =
1.

2. If Ay belongs to the continuous spectrum, no
such state exists, but (4, can give a relative prob-
ability! for any two physical states ¢;, ¢, € @ (see
below),

With this interpretation, it is essential that ® and
®’ be stable during the time evolution: a physically
accessible state must remain such throughout its time
evolution if it does not suffer any external perturba-
tion; this means that the evolution equation needs to
be valid in both ® and ®’, which results from the
basic postulate of Sec. V.

We want to emphasize that this extended inter-
pretation is not incompatible with time reversal

invariance. Indeed, this law compares a process like

physical state / — experiment B — physical state I1
with the time reversed process

time reversed

physical state /< experiment BT

<« physical state II.
If we take for the physical states I and II two elements
of @, the usual discussion remains entirely valid and
no difficulty arises.

B. A Possible Generalization

The interpretation offered here is simply an adapta-
tion of the conventional one, based on the concept of
probability amplitude. But the structure itself of the
mathematical construction suggests a possible general-
ization, along the lines of Grossmann.*” We shall only
sketch it briefly, for several problems remain open.

To the triplet (6) correspond the following in-
clusions, both algebraic and topological?®:

£(P, @) < £, %) < £(D, D). (24)

N.B. We forget here for a while that certain operators
are antilinear; this will be taken into account in the
probabilities below.

In particular, £(J€, &) contains projection operators
representing questions (Sec. I). Since they are a special
class of observables, we shall call them observable
questions. But relation (24) suggests to us to introduce
two other types of questions belonging to £(®’, @)
and £(®, ®’), which we shall call universal questions
and generalized questions, respectively. For these
three types probabilities can be defined as follows:

1. Observable Question
Projection operator P, applicable to any normaliz-

able vector 4 € J€; the usual probabilistic interpreta-
tion is given by the two rules:

(a) The relative probability of positive answer to
the observable questions P,, P, in the state £ is given
by
(h] Py 1)

Rel Prob (P,, P,; h) = .
PP D) = G b, 1)

(25)

(b) The observable question P projects the system
into the state PJ€; in particular, the elementary
question P, = |g) (g] projects the system into the pure
state g.

2. Universal Question

Operator II from £X(®', ®) such that P = 711+ is

a projection operator of J; it is applicable to any

4* A. Grossmann, J. Math. Phys. §, 1025 (1964).
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idealized state, i.e., any bra vector ¢’ € ®'. The
probabilistic rules are the following:

()

’ H +
CALITE R,
(¢' | 19"

If ¢ is normalizable, ¢' = 7'h and (¢' |4y =
(h| P, |h); that gives again the standard formula (25).

(b) The universal question Il projects the sytem into
the state TI®' < ®; in particular, the elementary
universal question I1, defined by

b = (¢ | $)1¢) (V¢ € D)
projects the system into the state ¢ € ®. Equation
(26) then gives

Rel Prob (I1,, I1,; ) =

2

(¢'| )
(¢ | o)
With (¢'[ = (4], for instance, we get |¢,(4)/ds(1)]2,
which is obviously the relative probability of finding
a A component [i.e., a positive answer to the question
associated with (A|) in the states ¢, ¢,.]

Rel Prob (11, ,I1,,; ¢) = '

3. Generalized Question
Operator = from £X(®, ®’), applicable to any ket
vector ¢ € @ (physical state); the probabilistic rules
go as follows:

(@

<77'1<?S l é)
(ma | )
If there exists a projection operator P such that
7 = 7'Pr, m becomes observable and we recover (25)
again.

(b) The generalized question = projects the system
into the idealized state #® = ®’; the elementary gener-
alized question 74, defined by 7, |$) = (¢’ | ) (¢'],
V¢ € @, projects the system onto ¢’ € O’, so that

CAED

(¢:] &)

With (| = (4,1, ($sf = (4,], we get [$(1)/d(4)[%; i.e.
the relative probability of positive answer to the
questions associated with (4], (4,].

Rel Prob (m,, my; ¢) = eX)

2

.

Rel Prob (my,, 74,3 ) =

We have seen above a possible interpretation of the
probability amplitude (&' | $), where the vector ¢
represents the state of the prepared system; this
suggests to us to describe the preparation of the
system by a universal question, in the same way as it is
usually done by an ordinary projection operator. On
the other hand, we don’t see at present an obvious

physical interpretation for generalized questions
(except for the operators y, introduced in Sec. 1V,
which act as projection operators onto the eigenspaces
in @); they are not even completely defined, since
we lack a criterion to distinguish a nonelementary
generalized question from an ordinary operator of
£X(®, @’). Another open question is the following:
How can Gleason’s theorem,? and thus the density
operator, be generalized to the new classes of ques-
tions? This last problem is certainly nontrivial, since
Gleason’s theorem is intimately connected with the
properties of von Neumann algebras (definition of a
trace), which are typical of Hilbert space!

VII. CONCLUSIONS

The formalism which we have built in the spirit of
Gel’'fand, Foias, Roberts, and others provides a
reasonable and satisfactory formulation of Dirac’s
language. But the problem can.by no means be
considered as closed: the present work is a starting
point rather than a definitive achievement. Indeed,
many open questions remain—mainly of physical
character. A first problem is the uniqueness of the
space ©. We have required several times that it should
characterize the system as completely as possible—
in particular, that it should be invariant under all the
symmetry operations of the system—and the inter-
pretation given above implicitly supposes a unique
®. But we have seen also that practical reliability of the
formalism requires the existence of a sufficiently
well-known space @, which does not necessarily
coincide with the canonical solution of Roberts.!
Our guess is that all the admissible spaces (that is,
spaces invariant under all the labeled observables and
making them continuous, and the same for all the
symmetry operators of the system) will be physically
equivalent, in the sense that choosing one or another of
them will not bring any observable difference; this is
rather reasonable, but, of course, it requires a proof!
Also, the probabilistic interpretation deserves further
study: the whole theory of quantum measurement
should be rewritten in this new context; this would
provide (probably) an answer to the preceding
question, too.

What is the domain of applicability of this formal-
ism? For a finite nonrelativistic system (finite number
of degrees of freedom), it works easily, since one
deals only with a finite number of labeled observables.
The most interesting case is, of course, a system of
interacting particles, i.e., scattering theory; this
problem will be studied in a further article. A finite
relativistic system can be treated in exactly the same
way; it presents, however, consistency difficulties
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which have nothing to do with spectral theory of
observables. But, of course, infinite systems, both
relativistic and nonrelativistic, are much more inter-
esting; here the need of a new language is most
pressing. For applications of the present formalism,
it is useful to distinguish three kinds of infinite systems.

A. System with a Unique Normalizable Vacuum

This is the type of system studied in axiomatic field
theory.® It has been shown by Maurin*® (see also
Roberts'®) that the Wightman-Borchers®*® formula-
tion is essentially equivalent to a *“‘triplet” formalism,
but the physical idea is very different: 3 is determined
there by a particular (Wightman) functional over a
standard test-function space, whereas here @ is
characteristic of the system and built from J, which
is given a priori. However, a possible bridge between
the two approaches may be provided by Jaffe’s local
quantum field theory,? where the choice of the test-
function space also reflects some properties of the
system.

B. System with a Unique, Nonnormalizable Vacuum

If we suppose that all creation and destruction
operators are continuous on ® and leave it invariant,
we can transpose them to @’ by duality (this pro-
cedure has been suggested by Kristensen es a/.%%). If
the vacuum is defined as the “state” annihilated by all
destruction operators, it is then possible to include it
in @’. (Its invariance under the group of relativity can
be treated similarly.) In this case the theory can be
developed as usual, the canonical commutation
relations being understood over © or @’; but only
the universal observables, i.e., those continuous from
@’ into @, can now have a well-defined vacuum
expectation value. This shows that such a vacuum is
in fact a bare vacuum, a state physically inaccessible
to the system. This kind of frame is probably well
adapted for a rigorous formulation of ‘“‘current
algebra” theories®: since all the relevant operators
(currents and current densities) are unbounded on ¢,
they will be most easily treated in ® and @', where
they become continuous.

48 K. Maurin, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astron.
Phys. 11, 115, 121 (1963).

49 H. Borchers, Nuovo Cimento 24, 214 (1962).

50 A, Jaffe, Phys. Rev. 158, 1454 (1967).

51 M. Gell-Mann, Physics 1, 63 (1964).

C. System where an Infinite Number of Realizations of the
Space of States are Considered Simultaneously

This is typically the situation of a system defined by
a representation of a group or an algebra which has
a noncountable number of inequivalent representa-
tions. Such are, for instance, the BCS model of
superconductivity®® (gauge group), the infinite system
of harmonic oscillators,®® or the boson gas®® (funda-
mental commutation relations), and, more generally,
all systems with a *““spontaneously broken” symmetry.
To each representation corresponds a Hilbert space
which completely describes the system, but, in order
to keep explicitly the freedom in the choice of this
representation, one considers all these Hilbert spaces
simultaneously, with a direct integral for instance,
together with some (nonobservable) operators, map-
ping them onto each other. But it must be emphasized
that the larger Hilbert space thus obtained is not the
space of states; it is a more general—and, in a sense,
artificial—space. In such a situation, one way out is
to build a triplet ®, = ¥, = @, in each component
« and to gather all these spaces in a big triplet ¢ =
J€ <= @’ with help of Foias’s natural operators!! (see
the note at the end of Sec. IV).

These indications are rather vague and sketchy,
but it is not unreasonable to hope that the present
formalism will be useful in such general situations, as
it is in simpler cases. This might then provide an
answer to Dirac’s recent criticism of the adequacy of
Hilbert space to describe field theory.** But there
remains of course an impressive amount of work to be

done!
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Some concepts which have been proven to be useful in general relativity are characterized, definitions
being given of a local isometry horizon, of which a special case is a Killing horizon (a null hypersurface
whose null tangent vector can be normalized to coincide with a Killing vector field) and of the related
concepts of invertibility and orthogonal transitivity of an isometry group in an #-dimensional pseudo-
Riemannian manifold (a group is said to be orthogonally transitive if its surfaces of transitivity, being of
dimension p, say, are orthogonal to a family of surfaces of conjugate dimension n — p). The relation-
ships between these concepts are described and it is shown (in Theorem 1) that, if an isometry group is
orthogonally transitive then a local isometry horizon occurs wherever its surfaces of transitivity are null,
and that it is a Killing horizon if.the group is Abelian. In the case of (n — 2)-parameter Abelian groups
it is shown (in Theorem 2) that, under suitable conditions (e.g., when a symmetry axis is present), the
invertibility of the Ricci tensor is sufficient to imply orthogonal transitivity; definitions are given of
convection and of the flux vector of an isometry group, and it is shown that the group is orthogonally
transitive in a neighborhood if and only if the circulation of convective flux about the neighborhood
vanishes. The purpose of this work is to obtain results which have physical significance in ordinary
space~time (n = 4), the main application being to stationary axisymmetric systems; illustrative examples
are given at each stage; in particular it is shown that, when the source-free Maxwell-Einstein
equations are satisfied, the Ricci tensor must be invertible, so that Theorem 2 always applies (giving a
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generalization of the theorem of Papapetrou which applies to the pure-vaccuum case),

1. INTRODUCTION

The purpose of this paper is to develop in a coherent
way some concepts which are currently being found
useful in work on general relativity in connection with
isometries, and to point out some of the relationships
between them and show how they may be applied.
Although the motive for this study is to obtain physical
applications to 4-dimensional space-time, the results
are all derived in n dimensions, because, on one hand,
very little extra work is required, while, on the other
hand, considerably greater mathematical insight is
obtained.

The main subject of discussion will be certain
types of horizons which we shall now define.

A null hypersurface in a pseudo-Riemannian
manifold is said to be a local isometry horizon (which
we henceforth abbreviate to LIH) with respect to a
group of isometries if (I) it is invariant under the
group, and (II) each null-geodesic generator is a
trajectory of the group.

The special case of a null surface which is an LTH
with respect to a one parameter group (or subgroup)
is said to be a Killing horizon. In other words, a
Killing horizon is a null surface whose generating null
vector can be normalized so as to coincide with a
Killing vector field.

The purpose of these definitions is to isolate the
characteristic features of the class of functions of
which the Schwarzschild horizon? is the most familiar

1 M. D. Kruskal, Phys. Rev. 119, 1743 (1960).
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example in so far as these features can be described
in terms of purely local concepts. The physical signifi-
cance of an LIH is that on it a particle may at once be
travelling at the speed of light (along one of the null
generators) and standing still (in the sense that no
change in its surroundings can be detected as its affine
parameter varies because it is moving along a trajectory
of a motion which leaves invariant both the intrinsic
structure of space-time and the position of the null
surface itself). As a general consequence, infinite red
or blue shifts will be observable in relation to the
frames of reference naturally determined by the
isometry group.

LIH’s are worth studying because, in addition to
their local significance, they may have considerable
importance in the global structure of space-time, for
example as event horizons? or Cauchy horizons,? etc.
Killing horizons in particular are interesting in four
dimensions because any spacelike 2-surface within
such a horizon will be marginally locally trapped
according to the definition of Penrose.* This is because
the null vectors generating the Killing horizon must
have zero expansion, rotation, and shear (ie., p =
o = 0 in Newman-Penrose language).® The vanishing
of the first of these means that one family of null
normals to the 2-surface is not expanding in either
direction, and so there must be a sense of time

2 W. Rindler, Monthly Notices Roy. Astron. Soc. 116, 662 (1956).

3 S. W. Hawking, Proc. Roy. Soc., London A294, 511 (1966).

4 R. Penrose, Phys. Rev. Letters 14, 57 (1965).
5 E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).
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direction in which both families of null normals are
nonexpanding. If the required sense happened to be
the same over the whole 2-surface, then it would
follow, in the case of a compact 2-surface, that it
would be a closed marginally trapped surface. (A
marginally trapped surface is one which satisfies the
condition that neither family of null normals diverges,
but not the strict condition that both converge.) How-
ever, although such global properties as these pro-
vide much of the motivation for studying LIH’s,
we restrict attention to purely local concepts in this
paper.

It is worth emphasizing that the conditions (I)
and (II) in the definition of an LIH are independent
of each other, and that they are both essential if the
condition is to be sufficiently restrictive to be useful.
In physical terms, they are both necessary if a particle
moving along a null generator is to be able to be
thought of as also standing still, since if (II) were not
satisfied it would have motion with respect to the
intrinsic structure of space-time, while if (I) were not
satisfied the null surface itself would define a structure
with respect to which motion could be defined. These
points may be made clearer by consideration of a few
simple examples.

A trivial example is provided by the null cone of a
point in Minkowski space, which is an LIH with
respect to the Lorentz group at that point, but not
with respect to the full Poincare group [since (I) would
not be satisfied] nor with respect to the rotation group
at the point [since (I) would not be satisfied]. It is not a
Killing horizon.

The classic example is the Schwarzschild horizon,?
which is an LIH with respect to the one-parameter
group of static displacements, and is therefore a
Killing horizon. It is also an LIH with respect to larger
groups such as the Abelian group (static displace-
ments) @ (rotations about an axis). Within the
Schwarzschild horizon there are many null hyper-
surfaces which satisfy (I), but the definition excludes
them from being counted as LIH’s because they do
not satisfy (1I).

A slightly more complicated example is provided
by the Kerr solution® when a > m (in the standard
notation as used in Ref. 4), in which there are LIH’s
with respect to the Abelian group (stationary displace-
ments) @ (rotation about the axis), but not with
respect to any larger groups. These LIH’s also are
Killing horizons, ‘but this is less obvious than in the
case of the Schwarzschild solution because the
Killing fields involved are not the same as the unique

8 R. H. Boyer and T. G. Price, Proc. Cambridge Phil. Soc. 61, 531
(1965).

Killing field which is timelike at infinity. This will be
further discussed in Sec. 4.

It is now natural to wonder under what conditions
LIH’s and Killing horizons are likely to occur. A
casual glance at the Schwarzschild solution might
suggest that they occur where a Killing vector field
becomes null. However, a little consideration shows
that this is neither sufficient nor (except for a Killing
horizon) necessary. For example, in Minkowski space
one may form a whole class of Killing vector fields by
taking different linear combinations of a static dis-
placement and a rotation about an axis, but the
hypersurfaces on which these fields become null are
not themselves even null, but are timelike.

Further investigation of this question constitutes
the principal content of this paper. With this end in
view we introduce, in Sec. 2, the idea of an isometry
group being orthogonally transitive, meaning that the
surfaces of transitivity are orthogonal to a family of
surfaces of conjugate dimension. It is a convenient
consequence of orthogonal transitivity that it is
possible (where the surfaces of transitivity are not
null) to choose coordinates in two sets, constant on
the surfaces of transitivity and the orthogonal sur-
faces, respectively, in such a way that the resulting
form of the metric tensor makes manifest, as far as
possible, the isometries, and at the same time contains
no cross terms between the two sets.

One of the main results of this investigation is
given in Sec. 3, where it is shown that, wherever the
surfaces of transitivity of an orthogonally transitive
group do become null, an LIH occurs. In Sec. 4 it is
shown in addition that if the group is Abelian, such an
LIH is a Killing horizon.

In Secs. 5 and 6 it is shown that orthogonal transi-
tivity is not merely a condition imposed for mathe-
matical convenience (although it has often been
assumed in past investigations without any other
justification) but that it may be expected to occur
naturally under fairly general conditions, provided the
group is Abelian and provided also that its surfaces of
transitivity have (# — 2) dimensions where # is the
dimension of the manifold [orthogonal transitivity
being trivial in the (n — 1)-dimensional case]. These
conditions are given a physical interpretation in
general relativity in terms of the vanishing of the
convective circulation of matter around a region.

As the paper progresses the class of groups under
consideration has to be progressively restricted: from
general groups in Sec. 3 to Abelian groups in Sec. 4
to Abelian (7 — 2)-parameter groups in Secs. 5 and
6. However, all the results apply to 2-parameter
(and trivially to 3-parameter) Abelian groups in
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four-dimensional space-time, and therefore to station-
ary axisymmetric systems in particular.

2. INVERTIBILITY AND ORTHOGONAL
TRANSITIVITY

We now introduce the related concepts of orthog-
onal transitivity and invertibility of a group of
isometries.

Consider an open region ‘WL on an n-dimensional
manifold such that there is a continuous group of
isometries whose surfaces of transitivity have dimen-
sionality p (1 <p <n —1)inU.

Then the group is said to be orthogonally transitive
in W if there exists a family of (# — p)-dimensional
surfaces which are orthogonal to the surfaces of
transitivity at each point in “W.

The group is said to be invertible at a point P in ‘W
if there is an isometry leaving P fixed which simul-
taneously inverts the sense of the p independent
directions in the surface of transitivity at P, but
leaves unaltered the sense of the directions orthogonal
to the surface of transitivity at P. If such an isometry
exists, it is clear that it is an involution and that it is
uniquely determined.

It is important to note that a group cannot be
invertible at a point P if the surface of transitivity
through P is null, since in this case there is a direction
in the surface of transitivity which is also orthogonal
to it. This situation is not merely due to an inadequacy
in the definition of invertibility, but is a result of the
fact that, even when the group is invertible on the
other surfaces of transitivity in the immediate neigh-
borhood of P, there is generally a real distinction
between the two opposed arrangements of the direction
senses in the null surface of transitivity. This somewhat
paradoxical state of affairs may be made intelligible
by means of an illustration. Consider the 1-dimen-
sional group generated by stationary displacements
in Kruskal’s -completed Schwarzschild solution.!
This group is invertible everywhere except on the
horizon, where the Killing vector becomes null. It is
immediately clear that there is a distinction between
the two senses of direction along a line of transitivity
there, since in one sense the line approaches a fixed
point of the group, while in the other it continues to
infinity without interruption.

It can easily be seen that orthogonal transitivity is a
necessary condition for a group to be invertible in a
neighborhood. For suppose we have an n-dimensional
manifold with a group of isometries whose surfaces of
transitivity are p-dimensional, and which is invertible
in the neighborhood of a point P. Construct the set of
all differentiable paths in the neighborhood which

pass through P and which are everywhere orthogonal
to the surfaces of transitivity. This set of paths
intersects each surface of transitivity in a unique
point: for consider a pair of paths PQ and PQ’,
where Q and Q' lie on the same surface of transitivity;
since the directed compound path QPQ’ could be
defined without reference to any sense of direction in
the surfaces of transitivity, it follows that Q and Q'
must coincide, because otherwise the ordered pair
Q, Q' would give rise to an intrinsically defined sense
of direction in:the surface of transitivity at Q. It
follows that this set of paths generates an (n — p)-
surface through P which is orthogonal to the surfaces
of transitivity. By a similar construction at each point
in the neighborhood of P, a complete family of
orthogonal (n — p)-surfaces can be built up.

Thus, in order that a group should be invertible, it
is necessary that it be orthogonally transitive, and
also that the surfaces of transitivity be nonnull. These
conditions are not in general sufficient. For consider
as a counterexample the 4-dimensional space with
metric given by

ds? = a(z, t)e ™ dx? + 2b(z, t)e™¥ dx dy
+ ez, )dyt + dz2 —dr?, (1)

with a(z, t)e(z, t) > b*(z, t). Then the Killing vectors
0/0x and x(d/ox) + (0/dy) generate a non-Abelian
group which is orthogonally (and simply) transitive
over the 2-surfaces, z = const, ¢ = const, these
surfaces being orthogonal to the family of 2-surfaces,
x = const, y = const. The surfaces of transitivity
are nonnull. Nevertheless, it can easily be checked that,
except for some specially simple choices of the
functions a(z, t), b(z,t), c(z,t), the group is not
invertible.

Suppose, however, that we have an Abelian group.
In this case the requirement that the group be orthog-
onally transitive with nonnull surfaces of transitivity
is not only necessary but also sufficient for the group
to be invertible.

In order to see this, consider an #-dimensional
manifold with an orthogonally transitive Abelian
isometry group which has nonnull p-dimensional
surfaces of transitivity in some neighborhood. We
construct a manifestly invertible coordinate patch as
follows. Let y',--:,y"? be any well-behaved
coordinate system on one of the orthogonal (» — p)-
surfaces. There will be a nondegenerate induced metric
ds* =g, dy'dy?, i,j=1,-+-,n— p. By dragging
the system along under the operations of the group,
we equip all the orthogonal (n — p)-surfaces with
coordinates in which the induced metric has an
identical form, since, being nonnull, the surfaces of
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transitivity through the original orthogonal (n — p)-
surface span the whole neighborhood. It is for the
next stage that we need the group to be Abelian. We
choose p linearly independent Killing vector fields
generating the group, which we shall suggestively label
o/oyt, -+ -, 0/0y®. We proceed to attach a set of
coordinate values y*, +* -, ? to each of the orthog-
onal (n — p)-surfaces in the obvious way, i.e., we
first choose one of the (n — p)-surfaces as the origin,
! = - -+ = p? = 0; we then drag this one along under
the Killing vectors 0/0y?, - - -, d/0y”, thereby generat-
ing a hypersurface (since the Killing vectors commute)
which we label ¢! = 0; from here we form the family
of hypersurfaces ' = const by dragging this one
along under 9/0y' by corresponding values of the
parameter v'; finally, we repeat the process for
w2, -, P, As a result of the commutation, each
hypersurface y* = const is invariant under the Killing
vectors other than d/oy*. It follows that in each p-
surface of transitivity the induced metric is given by
ds® = h, dy* dy', (k,1 =1, -, p), where the coeffi-
cients h; are independent of o', - -+, 9®. Due to the
orthogonality, the metric on the whole space has
the form ds? = g;; dy* dy’ + hy, dy® dy'. Now consider
the inversion mapping (3, <« -, %) — (3, : * + , PP)
where ¢ = y¢(i=1,-++,n — p)and

¢k=_wk(k=1,...’P)_

Since g,; and hy, are independent of ¢', - -+, u?, this
is clearly an isometry; thus the group is invertible.

We note in passing that the concept of being static
is the special case of orthogonal transitivity which
refers to a Il-parameter group (applying in the
stricter sense only when the Killing vector is time like).
Since a l-parameter group is automatically Abelian,
orthogonal transitivity and invertibility are equivalent
here when the Killing vector is nonnull.

By a rough analogy we can transfer these ideas from
groups to tensors. Let ,,{* (i =1, p) be a set of
independent vectors spanning a p-dimensional surface
element at a point P, and let ¥y, (j=p + 1, -+, n)
be a set of independent vectors spanning the orthog-
onal (n — p)element at P. Then a tensor T is said to be
orthogonal to the p-surface element at P with respect
to a particular subset of s of its indices if, when
we form the mixed components T*1"""#r, .,  which
are covariant in the indices of the subset and contra-
variant in the others, the contraction

AU PR a L A
"hu’ k4 rnl‘rT ! '}d"’}vx (ﬂl)c 1’ * (ﬂs)g *

vanishes for all possible choices of o, -, «, and
B, ", B,. The tensor is said to be invertible in the
p element at P [or invertible about the orthogonal

(ay),

(n — p) element at P] if each of the scalars obtained by
contracting any combinations of its indices with any
choice of the ,{* and the Yy, is invariant when
@8 = — 0t and Yy, — Yy for all i, j. Obviously,
these definitions are independent of the choice of basis
vectors in the elements. Clearly also, the statement
that a tensor is invertible in an element is equivalent
to the statement that it is orthogonal to the element
with respect to every subset consisting of an odd
number of its indices. The definition of invertibility is
quite straightforward when the element is nonnull,
so that (;,{* and the “»* are linearly independent.
It is slightly more subtle when the element is nulf,
since there then exist directions common to these
sets. The definition requires that such a direction be
inverted when represented by a contravariant vector
and left unaltered when represented by a covariant
vector. In this way a tensor can be invertible even in a
null element, although a group cannot be invertible
on a null surface of transitivity.

A tensor is said to be orthogonal (with respect to a
subset of indices) to a group or invertible in a group
if it is orthogonal (with respect to the subset of
indices) to the surfaces of transitivity or invertible in
them respectively. Clearly, if a group is invertible,
then any intrinsically defined tensor (such as the Ricci
tensor or the Weyl tensor) must be invertible in it.

3. AN EXISTENCE THEOREM FOR LOCAL
ISOMETRY HORIZONS WHERE AN ORTHOG-
ONALLY TRANSITIVE GROUP HAS NULL
SURFACES OF TRANSITIVITY

We can use the concepts of the previous section to
proceed further with the question raised in Sec. 1.
Before doing so we explain our notation and state
Frobenius’s theorem, which is fundamental to
questions of orthogonality. We use square brackets to
denote antisymmetrization and round brackets for
symmetrization; when two such operations are to be
performed in a context where the order is important,
we shall indicate the operation to be performed first
by using boldface brackets as,e.g.,, [---[---1---].
We define the p vector generated by a set of vectors
W, it as
wrL T Kp (1)2_:[“ e (mzkul (2)

and define the orthogonal conjugate in n dimensions
as

*w WEL e (3)

Hp+1*°* Ha K1' ' Kpllp+1'* ' fin

1
= —c¢€
p!

where €, ..., is the alternating tensor. Frobenius’s
Theorem (see, e.g., Schouten?) states that a necessary

7J. A. Schouten, Ricci Calculus (Springer-Verlag, Berlin, 1954),
p. 8L.
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and sufficient condition for a field of such p vectors
to be orthogonal (locaily) to a family of (n — p)-
surfaces in # dimensions is

WKL Koy VIde -t Ay (g

4)
It is convenient for future reference to have the
expansion

Wik eptuyvida ey

1 2 t—1, . [xk1" K u;v]
=;Zl(‘“1) TP

i Ai+1 . .. A
X @l i L (5)

The following theorem (which covers the cases of
the Schwarzschild and Kerr solutions) shows that
LIH’s may be expected to occur in a fairly wide
class of circumstances.

Theorem 1: Let U be an open subregion of an
n-dimensional C? manifold with a C! pseudo-Rie-
mannian metric, such that there is a continuous group
of isometries whose surfaces of transitivity have
constant dimension p (1 < p <n —1)inU.

Let N’ be the subset (which must obviously be
closed in W) where the surfaces of transitivity become
null, and suppose that they are never more than
singly null (i.e., the rank of the induced metric on the
surfaces of transitivity drops from ptop — 1 on N,
Hut is never lower).

Then, if the group is orthogonally transitive in W,
it follows that N is the union of a family of non-
intersecting hypersurfaces which are LIH’s with
respect to the group, and consequently (since N is
closed) that the boundaries of N’ are members of the
family.

Proof: In the neighborhood of any point in U we
choose a linearly independent set ,{*(i=1, -+, p)
of the Killing vectors generating the group, and form
the Killing p vector tangent to the surfaces of transi-
tivity

Wi =g Bl £, (6)
We now substitute this in the identity (5), make a
further expansion of the right-hand side, and finally
antisymmetrize the whole over the indices u, »,
Aoy v+, A,. Most of the terms then drop out, leaving
the reduced identity
wlxkL - Kg;[uWVJZz Tt dpl

2
TP+ D +2)

.. K"W[v}'z <o Apind

{ZW"I S kil vAs s Ap]
— w1
S
Ki... Ki— K P K
- 221(1>5 P e E e (6
£

x (i)g(m]:[u)wvlz o Ay]}'

Q!

Since the surfaces of transitivity are (n — p)-
surface orthogonal, Eq. (4) holds, and so the left-hand
side of Eq. (7) vanishes. Since the (,, & satisfy Killing’s
equation %Y =0, it follows that the last term
vanishes also. This leaves the relation

2w Rt ] e kel (@)
Contracting with w, ..., and setting
W=;)1—!w“1""‘”w,q...,(p, 9)
we obtain the result
Wittt Aol = Jylie - 2ol (10)

We shall use the orthogonal conjugate form of this
equation, i.e.,

Wp FyPho+2 ' Kn — T kyPKptz Kn

w1
Now the vanishing of W at a point is a necessary
and sufficient condition for the p surface of transitivity
to be null there, or, in other words, W = 0 is the
equation of the set N,
Hence in the open region ‘Wb — N we may divide by
W to obtain

(lIl W),p FppPhota ' Kn = ¥yPRpiac e K";p .

(12)
Since the right-hand side is continuous in U, this
equation may be interpreted as implying that the
left-hand side is locally bounded in UL — N,

Now let us restrict attention to a particular one of
the orthogonal (n — p)-surfaces. Suppose that this
surface lies partly in N and partly outside. Then in the
neighborhood of any point on the boundary In W
must be unbounded, and consequently the restriction
of its gradient to the (# — p)-surface must be un-
bounded. But *w*»+1"""%» is the tangent element to
the orthogonal (n — p)-surface and is locally non-
vanishing. Thus (12) implies that the restriction of the
gradient of In W to the (n — p)-surface is bounded,
contrary to the deduction we have just made. It
follows that if any part of one of the orthogonal
(n — p)-surfaces lies in N, then the whole of it must
lie in N,

Consider one such (7 — p)-surface through a point
P in N'. At each point on this surface w*1"*"*» and
*¥whe1"""Kn together generate an (w — 1) element,
since, being singly null, they have a unique (null)
direction in common. Therefore, by dragging along
the (# — p)-surface under the operations of the
group, we obtain a uniquely defined null hypersurface
through P which is contained in N, Its null geodesic
generators lie everywhere in w*t"*" *» and consequently
are trajectories of the group. They cannot intersect
since otherwise the member of the family passing
through a point of intersection would not be unique.
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We remark on a few points arising from this
theorem.

(1) In Lorentz spaces (i.e., those with signature
n —2), and in general relativity in particular, the
restriction that the p-surfaces should be at most
singly null is unnecessary, since higher nullity is not
possible in these spaces anyway.

(2) When p = n — 1, the orthogonality condition
is automatically satisfied, and the conclusion of the
theorem is also a trivial result.

(3) When p=n—1, and also when p=1, a
converse theorem holds as a trivial result. The con-
verse theorem may be stated as follows: If J¢ is an
LIH with respect to a group which is transitive over
p-surfaces in n dimensions, then these p-surfaces are
(n — p)-surface orthogonal on ¥X. However, this
converse does not hold for the intermediate values
p=2,n-2

In the case n = 4, p = 2, a simple counterexample
is given by the space (which has Lorentz signature
when x < 1) with metric

ds? = dx* + dy* + dz? — 2dx dt

+ 2ydzdt — (x — yBde2. (13)

Here x = 0 is an LIH with respect to the group

generated by 0/0r and 0/0z. Nevertheless, the Killing

bivector 9/dt A 0/0z is not 2-surface orthogonal at
=0.

(4) Most commonly, N will consist of discrete
hypersurfaces separating regions of positive and
negative W, i.e., regions where the Killing p-vector
is nonnull and contains, respectively, an even and an
odd number of independent orthogonal timelike
directions (or more simply, in a Lorentz space, where
the Killing p-vector is, respectively, spacelike and
timelike).

A special case, which also arises commonly, is the
situation where two such hypersurfaces have coalesced
to give one, so that W has the same sign on both sides
and has vanishing gradient on the hypersurface.

These possibilities are very well displayed in the
hybrid Kerr~Reissner—Nordstrom solution.® The met-
ric form in which it was discovered is

ds® = p*d6® + 2asin®O0drdy — 2 dr du
+ {r’ + a® + 2mr — €®)p?a®sin® 6} sin® 6 dg®
— 2a(2mr — €)p~? sin® 6 do du
— {1 — 2mr — &)p?} du?, (14)
where p? = r? 4 4% cos? 0, and the parameters m, e,

ma, and ea are to be interpreted as the mass, charge,
angular momentum, and magnetic dipole moment,

8 E. Newman, E. Couch, K. Chinnapared, A. Exton, A. Prakash,
and R. Torrence, J. Math. Phys. 6, 918 (1965).

respectively. Here, and in applications to general
relativity throughout this paper, the units are under-
stood to be such that the speed of light ¢ and Newton’s
gravitational constant y are both unity.

The Killing bivector 0/0p A 0/0u is 2-surface
orthogonal. It becomes null on the hypersurface where
A =r?—2mr 4 e + a® = 0. Consequently, Theo-
rem 1 implies that the hypersurfaces A = O are LIH’s.

The orthogonality is not immediately apparent in
the above coordinate system, but, according to the
result demonstrated in Sec. 1, a manifestly invertible
coordinate system must exist. It may be obtained
explicitly by using the generalized Boyer-Lindquist®
transformation:

dt = —du — (r* + a®)A1dr, d¢ = de + aA1dr,

giving the invertible form

ds? = pzA_l dr? + p2 d6*
+ {r* + a® + 2mr — €®)p~%a*sin® 6} sin® O d¢?
+ 2a(2mr — €)p~sin® 0 d¢ dt

— {1 — Qmr — &)p?} di’. (15)

This form necessarily fails when the Killing bivector
becomes null, but the orthogonality is patent else-
where and it can be deduced by continuity that it
holds where A = 0 also.

The general and special cases mentioned above
correspond to distinct and continuous roots of A,
When there are no real roots, there are no LIH’s.
These different cases give rise to significant differences
in the global topology (see the diagrams in Carterl?),
which can-be applied qualitatively to the charged case
provided it is noted that the discriminant of A is
changed from m?* — a® to m* — a? — €2, and provided
a® £ 0; when a* =0, the appropriate topological
diagrams are also given by Carterl!). In this paper we
are not concerned with global matters, but it is the
intimate connection between large-scale topology and
LIH’s which provides one of the motives for studying
the latter.

4. EXISTENCE OF A KILLING HORIZON
WHERE AN ORTHOGONALLY TRANSITIVE
ABELIAN GROUP HAS NULL SURFACES
OF TRANSITIVITY

If we are dealing with an Abelian group, the
conclusion of Theorem 1 may be considerably
strengthened.

Corollary to Theorem 1: Let the postulates of
Theorem 1 be satisfied. Then if in addition the group
? R. H. Boyer and R. W. Lindquist, J. Math. Phys. 8, 265 (1967).

10 B. Carter, Phys. Rev. 141, 1242 (1966).
11 B. Carter, Phys. Letters 21, 243 (1966).
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is Abelian, it follows that each of the resulting LIH’s
is a Killing horizon.

Proof: Consider one of the resulting LIH’s and let
its null generator be /*. Since /* lies in the surface of
transitivity of the group, we have

u D
=" (i)gu’

(16)

where the set of scalars Va is determined up to a
constant of proportionality. In order to show that this
LIH has a Killing vector field coinciding with its null
generator, we need to show that the factor of propor-
tionality may be chosen so that the o are constant in
the LIH.

Since the surface of transitivity is only singly null,
the direction of /# is fully determined by the condition
that it be orthogonal to the surface of transitivity,
ie., /,w*:""% = 0; thus substituting from (14) we
find that the ‘o are determined by

amp e =05 apg = @& .- (17)
The solution of these equations is given by
Wo = kAP, for fixed j, (18)

where k is an arbitrary constant of proportionality
and AV is the cofactor of a . Since 4, is
singly null, its adjoint has rank 1 (by a well-known
theorem of Jacobi) and therefore this set of solutions
is nonvanishing for some values of j and is the same
for all such values. For convenience we take j = p,
reordering the labels if necessary in order to obtain a
nonvanishing result.

We need to show that each of the ratios Vo to ®
is constant in the LIH. Since the Killing vectors
commute, this is true automatically in the surfaces of
transitivity and so we need only show that the ratios
do not vary in orthogonal directions, i.e., that

(19)

Hence, by (18), we have established the required
result if we can prove

[(&), ()] —
o a'[pwvl ceev,] & 0.

A[(")[(MA””("),[‘,W” v = 0. (20)

The cofactors are given explicitly by

AP = (“1)i+p(P - ! (1)5;:1 o (z‘—l)ém_l
X (216 e (g @EXT &l (21

Therefore, using Killings equations ,,&,.,, = 0 and
the commutation conditions

v o v
(z')éu;v (7’)5 - U)éu:v (z’)f >

we obtain
() (p) i
AP = 2(—1)y"(p — 1)!

X (I)En e ’ (p)fl‘p—l

p—1
X Zl (i)é:[n Ce (j)ij;p PN (%1)5%«1]' (22)
j=

(i~1)5,<i_1 (i+1)§x,- te

Again substituting (6) into the orthogonality con-
ditions (4) and using the expansion (5), we see that
the orthogonality conditions are equivalent to

(EEPW M = 0 (each j). (23)
On expansion this gives
D
2 (J')'fd;[pwvl vl = Zl(—l)l ¢’
=
X <j)5(p;v1 (i)§V2 e (1—1)§vl (z+1)§vm e (D)Evl,]' (24)

Consequently we deduce that

D
[cr. .. e 1l
221 W& HE T e8I
fn

— (1)§[K1 e (p_1)§K"—1]

p—1
X Zl("l)jmf[p;vl (1)&2 e (;—1)5v,- (J'+1)’§v;+1 o '(p)fv,,]
j=

p—1

- Zl(—'l)j W& T (,,)EK"”]
=
X 0&tom v T -0bi,1 (25)
Substituting into (22) and using (21), we obtain
A(z’)(p),[pwh e
. p—l .
— A(z)(zz) zl(_ 1): (:i)é[p;vl
=
X b, (j—l)fv,» (1’+1)5vi+1 o fv,,]
v
— (_1)1J-ZA(z)(;)g[ﬂ;“é:v2 e 5Vp~1]' (26)

i=1
When this is substituted into the left-hand side of
(20), it can be seen that each of the terms has as a
factor a 2 X 2 minor of the adjoint matrix A®®),
The terms must therefore vanish since, as has been
already remarked, this matrix has rank 1. Thus (20)
is true and the result is established.

We can apply this result to the charged Kerr solution.
In terms of the metric form (14) with coordinates
numbered from 1 to 4 in the order r, 8, ¢, u, we find
that the normal to the hypersurface A =0 has
covariant components /, = 4,. We can use the
inverse metric given in Ref. 8 to obtain the contra-
variant components of the null generator:

= p (A0 — adl — (r* + a®)dy).
On the surface A = 0, r takes constant values r..
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Therefore we see that the null generator can be
normalized so as to coincide with the Killing vector
«(0/09) + (r%. + a®)0/0u.

It should not be concluded from the result of this
section that any null hypersurface which is an LIH
with respect to an Abelian group is also a Killing
horizon. A counterexample is provided by the metric
described in note (3) after Theorem 1. It contains an
LIH at r = 0 with respect to the Abelian group
generated by 0/0z and 0/0r. However, since the
orthogonal trapsitivity condition does not hold,
there is no reason why it should be also a Killing
horizon, and indeed it is not. The null generator is
0/0t — y0[0z. Therefore it cannot be normalized so
as to coincide with any Killing vector field.

5. ORTHOGONAL TRANSITIVITY AND
INVERTIBILITY OF AN (7 — 2)-PARAMETER
ABELIAN ISOMETRY GROUP WITH INVERT-

IBLE RICCI TENSOR

It is worthwhile to enquire when orthogonal
transitivity and invertibility are likely to occur, not
only because of their connection with LIH’s, but
also because they give rise to useful simplifications
generally. Since in fact a large proportion of the known
solutions of the general relativity equations have been
obtained with the aid of various preassumed invert-
ibility conditions (usually introduced with no other
justification than algebraic convenience), it would
probably be helpful in the future to know when such
assumptions are reasonable and when they involve
undesired restrictions.

One might also ask the specific question whether
the orthogonal transitivity of the Kerr-Reissner—
Nordstrom solution is merely a convenient algebraic
coincidence, or whether there is a deeper reason for it.

Papapetrou has pointed out!? that in the uncharged
case there is a deeper reason, since he has shown that
any stationary axisymmetric space-time satisfying the
empty-space equations (i.e., vanishing Ricci tensor)
in a region including the axis of symmetry must be
orthogonally transitive in that region.

The objective of this section is to show that this
rather striking result is a special case of a theorem
with considerably wider significance. Thus Papapet-
rou’s result can be extended in several directions: to a
wider class of groups, to cases where the condition
that the Ricci tensor vanishes is replaced by the very
much weaker condition that it be invertible with re-
spect to the group (which covers the charged case
above), and to cases where the region under consid-
eration does not include a symmetry axis but satisfies

12 A. Papapetrou, Ann. Inst. H. Poincaré A-IV, 83 (1966).

certain alternative conditions (an aspect which is
further developed in Sec. 6).

When the general question of orthogonal transitivity
of a p-transitive group in n dimensions is examined, it
turns out that, for p = — 1, the problem is trivial
as has already been remarked, while for p <n — 3
the problem becomes very complicated, as it does even
for p = n — 2 in the non-Abelian case. Therefore in
the remainder of this paper we only attempt to deal
with Abelian groups, and we are soon obliged to
make the restriction p = n — 2.

Our results depend on the following lemma which
gives a connection between the orthogonality con-
dition and the Ricci tensor.

Lemma: Let wh' % =  Elh-.. EL] where
(1)5", RN (1,)5" are a set of generators of a p-param-
eter Abelian isometry group on an n-dimensional C3
manifold with C? metric. Then

{w[’ll cet ;"’fﬂ;p]};p = whir “RMP (i)é‘ﬂ,

p+2

i=1,---,p, 27)

where R¥ is the Ricci tensor.

Proof: For any set of C? vector fields,

p+2 AL, Ape 2 Apes
(1)5”,"',(p>5"< 3 W& (g E R () E  ERerrie]

2
1 p + 1 p—1 >
(- 1)( 3 )gl(_l)p 1
X E e GBI ) ERe gy ERe g ERete ],
(28)

When we take the contracted derivative and make
suitable rearrangements, we obtain the identity

A Ap— A A H
(0 + D{wE™ -+ o () E (T
2 Ap— A A ;
=3 (1)‘5[ Lo € 1{(11)5[ > ¢ vl p]};p

p—1
33 z (1)5[11 . (i)é:li;p, .. (p_l)glaﬂg:[lmglpﬂ];p]
i=1

p+1 PP Ape 2 Apard:
= ( W& (£ () E (y ERr )

p—1
AL, Ap— A Apid
=Y EH e Ee e B8 R}
i=1

-1
A, .. Ce Ap— As Apih
=2 EH e GBI e ERr B B hen]
i=1
p—1 i—1 i1
+23 (=177
i=2 j=1
1 Iy P Aie
X (1)5[ 1... (j_1)£: i 1(5+1)E i+l (i—l)f e ]
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We now use the condition that the (,,&* commute
with each other,

£ w8 =208, m&¥ =0
[§7]

(30)

This implies that the last term in (29) vanishes.
Applying Killing’s equation ()% = 0, we deduce
that ,,¢?; p = 0 and hence that the second last term
in (29) vanishes. Combining Killing’s equation with
(30) we obtain

i ;
£ {mE" @&}
Lé]

= {f"* &), 08 — 3 W8, ¥ (HEF =0,
(31
from which it follows that the third and fourth last
terms in (29) cancel each other out.
Since we could have singled out any one of the
@& (@=1,---,p—1) instead of (&, it follows
that for each i we have

{w[h cerdp (i)éu;p]};p

3 A Aom A
_—— (1)‘5[ 1... (i—l)E i 1(i+1)§ i+1 ..

p+2
X {8 (&, (32)

At this stage we introduce the Riemann and Ricci
tensors defined by

Cu:[w] = %Rduvpga; R, =R,",.

If we substitute any Killing vector ,,&* in (33) and
use the full Riemann-tensor symmetries together with
Killing’s equation, we obtain

A
’ (zz)E i

(33)

@& = RM, )& (G4
Contracting Eq. (21) gives
@ = RY, 8. (35)

From (22), with further use of Killing’s equation, we

can deduce
{0&¥ &1}, = 3LE¥RY, (€. (36)

Finally, insertion of (36) into Eq. (32) gives Eq. (27),
which is the desired result.

It is convenient to work with the orthogonal con~
jugate form of Eq. (27), i.e.,

(n —p— 1) DX Kpag -+ kniol = 2 (i)EpRp“ *wux,,+3 ce e Kpo o
(37)

where we have introduced a set of twist tensors

(D xy g ke i=1,--- ’P) by
(33)

a— Hp *
(O K Kprs  kn — (i)f wupk,,+3 o Kpt

The significance of the twist tensors can be seen by
taking the orthogonal conjugate of Eq. (23). Thus
Frobenius’s Theorem may be expressed in the follow-
ing alternative form: The elements spanned by
W&, (& are orthogonal to a family of (n — p)-
surfaces if and only if all the corresponding twist
tensors vanish.

The utility of Egs. (37) lies in the fact that the
right-hand sides vanish for all i if and only if the
Ricei tensor is invertible in the p element. However,
as the equations control only the rotation of the
twist tensors, this restriction is not very strong except
when p > n — 2, so that the twist tensors reduce to
scalars or vanish trivially. This is why, in order to
make further progress, we consider only p = n — 2.
Thus we now reach the main result -of this section,

Theorem 2: Let D be a connected open subdomain
of an n-dimensional C® manifold with a C? pseudo-
Riemannian metric and an Abelian (# — 2)-parameter
isometry group, whose surfaces of transitivity, which
in general are (n — 2)-dimensional, become de-
generate on a subset § where the group has fixed
points.

Then the group will be orthogonally transitive
everywhere in D, and consequently invertible in D,
except where the surfaces of transitivity are null,
provided that:

(I) The Ricci tensor is invertible in the group
everywhere in D; and

(II) one of the following holds:

(a) & is nonempty;

(b) there is a discrete isometry in some neighbor-
hood in O consisting of an inversion in a direction
orthogonal to the surfaces of transitivity (in other
words, an inversion about a hypersurface to which the
surfaces of transitivity are tangent);

(c) it is known, for any other reason, that the
group is orthogonally transitive on at least one point
inD.

Proof: Let ,6*, i=1,"-+,n—2 be a set of
independent generators of the group. Then the
corresponding twist tensors (,,y are scalars and, by
the preceding work, they satisfy

WXe =2 (i)prp" *Wuo" (39

As has already been remarked, the invertibility of the
Ricci tensor implies the vanishing of the right-hand
side, and so we see that the (,x are constant in D,
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Thus the group will be orthogonally transitive every-
where in D, provided that these constants are all zero.
This establishes the result when (c) holds.

To check condition (b) we observe that if there is an
inversion isometry in some direction, then it follows,
when the direction is orthogonal to the surfaces of
transitivity, that the tensors ,)&*" are also invertible
in this direction. In the case under consideration,
Eq. (38) reduces to

WX = (i)Eu;p *Wup ’ (40)
and invertibility of the ,,&*" in a direction orthogonal
to the surfaces of transitivity implies that the right-
hand side vanishes, leading to the required result.

To check condition (a) we need only to notice that
on F the Killing p vector vanishes, and consequently
the .,y vanish there also by (40), giving the required
result.

This theorem is useful for general relativity because
of the physical significance of the conditions. Since the
metric tensor is invertible in all circumstances, we
could, if we wished, substitute the Einstein tensor for
the Ricci tensor in the statement of Theorem 2 and
substitute —G,* for R ? in Egs. (37) and (39), where
the Einstein tensor is defined by

-G/ =R}/ — }Rg/f 41)

so that in general relativity, with units as for Egs. (14)
and (15), the energy-momentum tensor satisfies

1

TS = - G/r.
Since n =4 in ordinary space-time, the physical
applications of the theorem are to 2-parameter
groups. Several 2-parameter Abelian isometry groups
have been used for idealized problems in general
relativity, of which cylindrical symmetry is perhaps
the most popular. However, the most important case
is that of stationary axial symmetry, since this applies
to large classes of finite astrophysical objects as a
realistic approximation,

As an example of the application of Theorem 2 to
this situation, we shall show that the original result of
Papapetrou, which applied to solutions of the vacuum
Einstein equations, is in fact equally valid for solutions
of the source-free Einstein-Maxwell equations.

Let F,, be the electromagnetic-field tensor and let
@€, i=1,2, be the two commuting Killing vectors
in the space. The Lie derivative of the electromagnetic-
field tensor with respect to each of these must vanish,
ie.,

42)

£ F,,=F,, W& + 2F[Elﬂl (i)EPVJ =0,

43
4§ ( )

from which, using the condition (17) that the Killing
vectors commute, we obtain

{Fuv (I)Eu (Z)Sv};a = 3F[uv;o] (I)Su (2)Ev- (44)

Similarly, we can obtain two equations identical to
(30) and (31), except that F, is replaced by its
orthogonal conjugate *F, . Maxwell’s equations take
the form

Fluyo =0, (45)
*Fruvay = (471/3) %o » (46)
where j# is the current vector, and so we obtain
{F,uv (1)5” (2)5v};a =0, (47)
(FFu 08 @8 he = 47 o € @8 (48)

Equation (34) implies that F,, )& (& is always
constant, while (48) implies that *F,  )&* 5¢&" is
also constant when the right-hand side vanishes,
which occurs if and only if the current vector lies in
the 2-surface of transitivity. Therefore, if these two
quantities vanish at any point in a connected region
satisfying this condition, and in particular if there is a
symmetry axis within the region where one of the
Killing vectors vanishes, then they vanish everywhere
in the region, i.e.,

Fo & @8 = *Fl‘v wé @& =0.

This is the condition that the tensor F,, be skew
invertible, i.e., that it be affected only by an overall
change of sign when the senses of the Killing vectors
are simultaneously inverted. Since the energy mo-
mentum tensor of the electromagnetic field is homo-
geneous quadratic in the electromagnetic field tensor
F,,, it follows that condition (49) implies that the
energy—momentum tensor is invertible, and con-
sequently, when no matter other than the electro-
magnetic field is present, that the Einstein tensor is
invertible so that the conditions of Theorem 2 are
satisfied.

Thus from Theorem 2 we deduce the following
result:

If the vacuum Einstein-Maxwell equations are
satisfied in a connected region of a 4-dimensional
space-time with a 2-parameter Abelian group, if a
symmetry axis is present in the region, and if the
source current is parallel to the 2-surfaces of transi-
tivity (and, in particular, if there is no source current,
as is usually assumed to be the case when no ponder-
able matter is present), then the group is orthogonally
transitive.

49)
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When no electromagnetic field is present, this
reduces to Papapetrou’s result. The more general
result shows that the orthogonal transitivity of the
Kerr-Reissner-Nordstrom solution could have been
predicted at once, even though it was not immediately
apparent in the original form (12) of the solution.

6. CONVECTIVE CIRCULATION

We have not yet fully exploited the information in
Eq. (39). In order to do so, we make some further
definitions with ultimate astrophysical applications in
mind.

A vector is said to be nonconvective with respect to
an isometry group if it is invertible in the element
orthogonal to the surface of transitivity at a point;
otherwise it is said to be convective; i.e., it is non-
convective if and only if it is tangent to the surface of
transitivity.

We define the flux vector of a group as the two-
index quantity

wF" = L w§Gy, (50)
8

where the ;,&” are a set of generators of the group.
This quantity transforms as an ordinary vector with
respect to u in the manifold, and as a covariant vector
with respect to (i) under a change of basis of the Lie
algebra of the group. We say that the group is non-
convective if ,,F* is nonconvective with respect to the
group for each (7). We note that the statement that the
group is nonconvective is invariant in the Lie algebra,
and that it is equivalent to the statement that the
Ricci tensor is invertible in the group.

Suppose that in an #-dimensional manifold with an
Abelian isometry group transitive over p-surfaces,
we have a finite segment JC of an invariant hypersurface
generated as follows. We take a finite segment 8 of an
(n — p — 1)-surface which cuts across the surfaces of
transitivity, and drag it along under a set

wés s

of independent generators of the group by finite
values, AV --- Ap!® of the group parameters
where the group parameters 'V, -- -, 9'?) may be
taken to be a set of functions defined on the space in
such a manner that

@& = Ox*[oy"? (51)
(x!, - - -, x™ being the coordinate patch in the mani-
fold to which the tensor indices refer). Then we define
the convective circulation through ¥ as the surface
integral of the normal component of the flux vector

over . The circulation transforms as a covariant
vector in the Lie algebra.

If J is generated by unit parameter changes
Ap) = .- = Ay'P= 1, we say that it is the unit
hypersurface J(8) through § and that the circulation
over it is the unit convective circulation over 8, which
we denote by ,C(8). We see that ,,C(S) transforms
as the product of a covariant vector and a density in
the Lie algebra.

When p = n — 2, 8 will be a line. We can now state
the following result.

Corollary to Theorem 2: Let the postulates of
Theorem 2 be satisfied except for the conditions (I)
and (II). Then the unit convective circulation between
two points in D is independent of the path over which
it is taken; and if the group is orthogonally transitive
at a point P in D, then it is orthogonally transitive at a
point @ in D if and only if the unit convective circula-
tion over a path PQ between then vanishes.

Proof: By Eqs. (39) and the definitions (41) and (50)
we have
(52)
Expanding this and expressing it in terms of differ-
ential forms, we obtain

DX = 167 (i)Fﬂ *wau .

d wx
167
= F €, kn_gon (I)S[Kl T (n~2)§K"_2] ax’,
(n —2)!

(53)
Now by (51) we have

dx" A0 K dxfne
= (n — 2)! (1)§[K1 . (n—2)£K"_2] d’l[)(l) A A dy)(n—Z).

(54)
Therefore,
< (n —2)! 0 (n—2)
FRPDY = —2 4 A Ad /\di9
(i) m 1677(11 _ 1) Y Y X
(55)

where we have defined the (n — 1)-form
1

.= (n_T)! €1 Kn_sop dx A - Adx"2 A dx°.

(56)

To obtain the unit convective circulation between
P and Q we integrate (35) over the unit hypersurface
J(PQ) which gives

n—21 9

d
16m(n — 1) Jp " ¥

C(PQ) = f @F" dZ, =
IPrPQ)

e (@ = )

16m(n D
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We can see at once that the result is independent of the
path PQ (even if D is not simply connected), and that
if ,,x vanishes at P, it will vanish at Q if and only if
»C(P, Q) vanishes. This establishes the required
result.

The mathematical significance of Theorem 2 and its
corollary seems to be that, in the circumstances to
which the results apply, the existence of orthogonal
transitivity is controlled almost entirely by the Ricci
tensor. One might have expected a priori that the
Weyl tensor would be able to transmit the effects of
noninvertibility of the Ricci tensor in a nearby region
and thereby prevent orthogonal transitivity from
obtaining in a region where locally the Ricci tensor is
invertible. Our results show that this can in fact
happen, but only in a very restricted way, governed
by the total circulation.

As we have remarked, the most suitable application
for these results in general relativity is to stationary
axisymmetric rotating bodies. Let us consider, in such
a case, a region where the Killing bivector is timelike.
(For a simple situation, such a region would have to
include the whole space, or else by Theorem 1 there
would exist an LIH, with, in general, dramatic
consequences.) Then locally it is possible to choose a
pair of Killing fields generating the group such that one
of them (;,&* is timelike, and the other (,)&* is space-
like. We can define momentum and stress flux vectors
P* and I'* by

Pt = () F* = )T, T'* = oF" = 6°T)".

The convective components of P* and I'* correspond
to momentum across the surfaces of transitivity and
shearing stress between the surfaces of transitivity,
respectively. The corollary to Theorem 2 gives
conservation equations for the convective components
of P# and T'*. They can be regarded as equations of
conservation of momentum and balance of torque
forces in the body. (Conservation of nonconvective
components is trivial in consequence of the group.)
The effects of gravitational potential energy and the
adjustment of the correct radial factor in the torque
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(3) (p)

FiG. 1. Cross sections of two examples of stationary axisymmetric
bodies are represented. The convective regions are shaded, with
convective flow lines marked. The nonconvective regions are dotted,
the only flow lines being directly into or out of the paper.

are automatically taken care of by the varying magni-
tude of the Killing vector with which the energy
momentum tensor is contracted.

Figure 1 shows two simple examples of rotating
bodies to which Theorem 2 and its corollary may be
applied. We know at once in such cases that the group
is orthogonally transitive in empty space outside the
body, since the exterior must always contain part of
the symmetry axis. (This is Papapetrou’s result.)
Now let us consider the interior. The first example is an
object which has a nonconvective core, but which has
a convective envelope containing two large convection
cells, one on each side of a plane of equatorial sym-
metry. We can deduce that the group will be orthog-
onally transitive in the core either by applying
condition (IIa), since the symmetry axis passes
through the core, or by applying condition (1Ib),
since the equatorial plane also passes through the
core. Hence, by the Corollary, the unit convective
circulation over any line passing from the core to the
outside must be zero. The second example is a smoke-
ringlike object containing an annular nonconvective
core about which the matter outside circulates; we
conclude, by the corollary, that the group is certainly
not orthogonally transitive in the annulus.
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This is Paper I of a series on high-frequency scattering of a scalar plane wave by a transparent sphere

(square potential well or barrier). It is assumed that ka)* » 1, |N — 1|*(ka)§ > 1, where k is the wave-
number, a is‘the radius of the sphere, and N is the refractive index. By applying the modified Watson
transformation, previously employed for an impenetrable sphere, the asymptotic behavior of the exact
scattering amplitude in any direction is obtained, including several angular regions not treated before.
The distribution of Regge poles is determined and their physical interpretation is given. The results are
helpful in explaining the reason for the difference in the analytic properties of scattering amplitudes for
cutoff potentials and potentials with tails. Following Debye, the scattering amplitude is expanded in a
series, corresponding to a description in terms of multiple internal reflections. In Paper I, the first term of
the Debye expansion, associated with direct reflection from the surface, and the second term, associated
with direct transmission (without any .internal reflection), are treated, both for N > 1 and for N < 1.
The asymptotic expansions are carried out up to (not including) correction terms of order (ka)~%. For
N > 1, the behavior of the first term is similar to that found for an impenetrable sphere, with a forward
diffraction peak, a lit (geometrical reflection) region, and a transition region where the amplitude is
reduced to generalized Fock functions. For N < 1, there is an additional shadow boundary, associated
with total reflection, and a new type of surface waves is found. They are related to Schmidt head waves,
but their sense of propagation disagrees with the geometrical theory of diffraction. The physical interpreta-
tion of this result is given. The second term of the Debye expansion again gives rise to a lit region, a
shadow region, and a Fock-type transition region, both for N > 1 and for N < 1. In the former case,
surface waves make shortcuts across the sphere, by critical refraction. In the latter one, they excite new
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surface waves by internal diffraction.

1. INTRODUCTION

This is the first in a series of papers dealing with
the scattering of a plane wave by a transparent sphere
at high frequencies. [A preliminary account of this
work?! and a survey of the main results? have already
been given.] The assumptions are

A1, IN—1EgE >, 1.1)

where
B =ka

is the dimensionless parameter associated with the
wavenumber k and the radius a of the sphere, and N is
the refractive index.

The lower limit on B for which the results are
applicable depends on the degree of accuracy desired.
It is hoped that they provide useful quantitative
information down to § ~ 100 and at least qualitative
information down to § ~ 10.

The sphere is assumed to be perfectly transparent,
so that N is real. Both ¥ > 1 and N < 1 are con-
sidered, but more attention is devoted to the former
case. Additional limitations on N will be set in
Paper 11.3 Extension of the results to complex values

(1.2)

1 H. M. Nussenzveig, Bull. Am. Phys. Soc. 11, 372 (1966).

2 H. M. Nussenzveig, to appear in Proceedings of the Theoretical
Physics Conference for R. E. Peierls’s 60th Birthday.

3 H. M. Nussenzveig, J. Math. Phys. 10, 125 (1969) (following
paper), to be referred to hereafter as 1L
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of N, to account for absorption, should not be unduly
difficult.
As a rule, we shall also exclude

N>»1, NKLI, (L.3)

although the reSults can be at least partially applied
in these cases. The reason for the second limitation in
(1.1) will be discussed in Sec. 2. We note here that it
implies

2IN—1B» B, (1.4)
where the left-hand side is the phase shift of a central
ray going through the sphere. This excludes the
domain of Rayleigh—Gans scattering (where the Born
approximation is applicable) and part of the anoma-
lous diffraction region. The terminology is explained
in Van de Hulst’s beautiful book (Ref. 4, p. 133).
In Van de Hulst’s chart of the N—§ domain (Ref. 4,
Fig. 20), the region we treat corresponds to the right-
hand side of the square, excluding the neighborhood
of the corners.

For the sake of simplicity, we discuss only the
scattering of a scalar field in the first two papers of
this series. The whole treatment can be extended to
electromagnetic scattering, as will be shown in the
third paper.®

4 H. C. Van de Hulst, Light Scattering by Small Particles (John

Wiley & Sons, New York, 1957).
5 H. M. Nussenzveig (to be published); hereafter referred to as III.
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The scalar wavefunction may be interpreted either
as the velocity potential of sound waves or as the
Schrodinger wavefunction in quantum mechanics.
In the latter case, the problem corresponds to the
scattering of nonrelativistic particles of momentum
p = hk by a square potential well or barrier of radius
a and depth (height) given by V5,

V)= =V, 0<r<a);

Vir)y=0 (r> a). (1.5)
The refractive index is given by

N = [1 + @mV,/r2k3)t, (1.6)

where m is the mass of the particle. Note that N > 1
corresponds to a well and N < 1 to a barrier. This
analogy, of course, is valid only at fixed energy, i.e.,
fixed k. For a fixed V,, N is frequency-dependent
(dispersion), while fixed N corresponds to an energy-
dependent potential (¥, proportional to the energy).

The extension of the present model to complex N
may be of some interest in connection with the optical
model in nuclear and high-energy physics. Of course,
it would still be unrealistic in several respects: at
high energies, inelastic and relativistic effects become
important, and the simple potential-well picture no
longer applies. Furthermore, some of the effects to be
described depend on the existence of a sharp edge in
the potential, which again might be unrealistic for
nuclear forces. Nevertheless, we shall see that at least
some of these effects appear to have analogs in the
nuclear case.

We are dealing with a classic problem in scattering
theory, the literature on which ranges over several
decades.® An excellent survey up to 1957 is given by
Van de Hulst.*

The exact solution of the electromagnetic problem
in the form of a partial-wave series is usually associ-
ated with Mie.” Asis well known, this series converges
very slowly at high frequencies. One can then associate
with the /th partial wave an “impact parameter”

pi= U+ Yk, (L.7)

and partial waves with p, < a are appreciably dis-
torted, so that one has to keep at least § terms in the
series. Experience with numerical computations has
shown that the actual number of terms that must be
retained is

l+ ~ ﬂ + Cﬁ%, (18)

where ¢ is a constant of order unity (empirically,
cz 3.

¢ N. A. Logan, Proc. L.E.E.E. 53, 73 (1965).
? G. Mie, Ann. Physik 25, 377 (1908).

This result can be understood in terms of the
penetration of the centrifugal barrier up to the surface.
The effective potential for radial motion is

U(r) = V(r) + B + 1)[2mre, (1.9)

where V(r) is given by (1.5). [Actually, in order to
apply the WKB approximation, /({ 4+ 1) should be
replaced by (/ + $)2.8] The discontinuity at r =g
gives rise to a barrier, and p; > a, according to (1.7),
corresponds to an energy below the top of this barrier.
The transmissivity of the barrier up to r =a — 0 is
then given by®

4N
N &P (29), (1.10)

where
+3
n=-[ -t

In particular, near the top of the barrier, we find
that

po~ =520+ § = BIFR, (1.12)

so that the transmissivity for p, > a is appreciable
only within the range f </ < [,.

The difficulty in employing the partial-wave expan-
sion at high frequencies is apparent from (1.8).
Nevertheless, in view of the practical importance of
the problem, numerical computations have been
carried out in this way up to values of § of the order
of a few hundred. Besides the fact that computer
calculations are no substitute for a physical under-
standing of the behavior of the solution, however,
there are also practical difficulties: The results are very
rapidly varying functions of 5, N, and the scattering
angle, so that very closely spaced points would be
required for accurate interpolation.

Several approximation methods have been proposed
to overcome these difficulties; they are reviewed in
Ref. 4. The “localization principle” (1.7) leads to a
subdivision of the terms of the partial-wave series
into three domains:

(i) 0< i<l ~f—chh (1.13)
(ii) L<l<l; (1.14)
(iii) I <L (1.15)

Partial waves in the domain (iii) are damped faster
than exponentially by the centrifugal barrier and give
a negligible contribution. The domain (i) gives rise
to the forward diffraction peak, as well as to the
contributions of reflected and refracted rays, accord-
ing to geometrical optics (Ref. 4, Chap. 12).

8 M. V. Berry, Proc. Phys. Soc. (London) 88, 285 (1966).
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The domain (ii) will be called the edge domain,
because it corresponds to incident rays passing close
to the “edge” of the sphere. We have already seen
that the transmissivity of the centrifugal barrier is still

appreciable for f < I </,. The domain I_ </ < f

corresponds to near-grazing incidence, so that strong
reflection occurs, as well as strong interference between
incident and reflected waves (Ref. 4, Sec. 17.21).
We shall see that the edge domain gives rise to some
of the most interesting effects.

According to classical mechanics, a particle with
I+ 4+ ~ f would have vanishing radial velocity at
r = a, and it might be expected to circle indefinitely
around the scatterer, a phenomenon known as
orbiting.® We shall see that the edge domain indeed
gives rise to surface waves, circling around the sphere
any number of times. In addition, for ¥ > 1, they
can also penetrate through the sphere, leading to
several striking effects, as will be seen later.

The most far-reaching attempts to derive the high-
frequency asymptotic behavior of the exact solution
have been based upon Watson’s transformation.1°-12
However, the results have never gone much beyond
other previously known approximations, and they
have been subject to several limitations. Only some
disconnected angular regions have been treated, with
no discussion of the transition between them. In
particular, the neighborhood of the forward and
backward directions, where several important diffrac-
tion effects take place, has not been treated.

Light scattering by water droplets in the atmosphere
gives rise to two of the most beautiful natural phenom-
ena: the rainbow and the glory. The best approxi-
mate theory of the rainbow so far available is still
Airy’s classic theory,’® despite the fact that it is
known to suffer from several shortcomings (Ref. 4,
p- 249). No satisfactory quantitative treatment of the
glory has ever been given.

A modified form of the Watson transformation has
recently been developed and applied by the author
to the problem of scattering by an impenetrable
sphere (Ref. 14, hereafter referred to as N). This
method enables one to derive the asymptotic behavior
of the exact solution at any distance from the sphere
and in any direction, including near-forward and
near-backward directions.

In the present series of papers, the modified Watson
transformation is applied to the transparent sphere

9 K. W. Ford and J. A. Wheeler, Ann. Phys. (N.Y.) 7, 259 (1959).
1¢ B. Van der Pol and H. Bremmer, Phil. Mag. 24, 141, 825 (1937).
11 p, Beckmann, Z. Naturforsch. 12a, 960 (1957).

12 §, 1. Rubinow, Ann. Phys. (N.Y.) 14, 305 (1961).

13 G. B. Airy, Trans, Cambridge Phil. Soc. 6, 379 (1838).

14 H. M. Nussenzveig, Ann. Phys. (N.Y.) 34, 23 (1965).

problem. We shall consider only the scattering
amplitude; the behavior of the wavefunction in the
near region is not discussed. The main resuit is that the
asymptotic high-frequency behavior of the exact
scattering amplitude in any direction can be deter-
mined by this method. The different types of transition
regions that occur are discussed. In particular, an
improved treatment of the rainbow and a quantitative
theory of the glory will be given.

In Sec. 2, the distribution of poles of the S function
in the complex angular-momentum plane is deter-
mined. Their physical interpretation is discussed and
their relation to the usual Regge poles that appear in
potential scattering is examined. This helps to clarify
a long-standing puzzle in scattering theory, namely,
the question of why cutoff potentials and potentials
with exponential tails give rise to scattering amplitudes
having widely different analytic properties. However,
it is found that the Watson transformation, applied
directly to the partial-wave expansion, is not at all
helpful, because the residue series associated with the
poles of the S function, in contrast with the case of an
impenetrable sphere, are not rapidly convergent.

This difficulty is circumvented in Sec. 3, by means
of a procedure first applied by Debye?® in the case of a
circular cylinder. The interaction of the incident wave
with the sphere is decomposed into an infinite series
of interactions with the surface, analogous to the
multiple internal reflection treatment of the Fabry-
Perot interferometer. The terms of this Debye expan-
sion are also closely related with the rays appearing
in the geometrical-optics (ray-tracing) method that
undergo multiple internal reflections. The poles in the
complex-angular-momentum plane associated with
the terms of the Debye expansion are determined.
It is found that, in contrast with the poles of the §
function, they give rise to rapidly convergent residue
series. The relation with previous treatments of the
problem is also discussed.

The modified Watson transformation can be applied
to each term of the Debye expansion. The asymptotic
behavior of each term, as in the impenetrable. sphere
problem, is usually dominated by contributions of
two types: (a) saddle-point contributions: these are
associated with geometrical-optic rays and the WKB
expansion, and they are related with partial waves
in the domain (i); (b) residue-series contributions:
these correspond to surface waves, and they are
related with partial waves in the edge domain (ii).

Each class of rays gives rise to “shadow” and “lit”
regions for the corresponding term of the Debye

15 p. J. Debye, Physik. Z. 9, 775 (1908).
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expansion. In lit regions, the amplitude is usually
(though not always) dominated by the geometrical-
optic contributions, whereas the surface-wave contri-
butions are usually dominant in shadow regions.
For N > 1, each term gives rise to different shadow
boundaries, but for N < 1 there exists a shadow
boundary common to all terms of the Debye expan-
sion.

For each term, we also find transition regions
between light and shadow, and the most interesting
diffraction phenomena occur in these regions. In
addition to “Fock-type” transition regions, such as
were found for an impenetrable sphere (N, Fig. 14),
we shall find new types of transition regions, such as
those associated with the rainbow and the glory. In
terms of the particle picture, shadow regions are
classically forbidden, and transition effects may be
interpreted as a sort of “inertial barrier” penetration.

As to the convergence of the Debye expansion, the
geometrical-optic contributions usually converge quite
rapidly, because of the attenuation due to successive
internal reflections, provided that we exclude the
cases (1.3). The surface-wave contributions do not
converge so rapidly, because of their high internal
reflection coefficient. Nevertheless, we shall be able
to estimate their combined effect, and we shall see
that, for N > 1, they give rise to rapid intensity
fluctuations, which become quite large in the case of
the glory.

The present paper is concerned with the evaluation
of the first two terms in the Debye expansion. The
behavior of these terms is discussed both for N > 1
and for N < 1. In Sec. 4, we consider the first term,
which corresponds to rays reflected directly from the
surface. For N > 1, the results are quite similar to
those found for an impenetra‘ble sphere. For N < 1,
however, we find a new type of diffracted rays, that
cannot be interpreted according to the usual formula-
tion of Keller’s geometrical theory of diffraction.!®
The physical interpretation of these terms is given.
In Sec. 5, the second term of the Debye expansion,
corresponding to rays directly transmitted through
the sphere, without any internal reflection, is treated
in a similar manner.

Paper 11 is concerned mainly with the third term,
and it contains the theory of the rainbow and the
glory (for the scalar problem). The effect of higher-
order terms will also be discussed. The conclu-
sions for both papers will be given at the end of
Paper I1.

16 J. B. Keller, in ““Calculus of Variations and its Applications,”
Proceedings of Symposia in Applied Mathematics, L. M. Graves,
Ed. (McGraw-Hill, New York, 1958), Vol. 8, p. 27.

2. THE POLES OF THE S FUNCTION

The total scattering amplitude F(k, 0) is given by
the partial-wave expansion
1 o)
Flk, 8) = = 2 (I + YISk — 1]P(cos ), (2.1)
1=0
where S, is the S function and P, is the /th Legendre

polynomial. We shall find it convenient to work with a
dimensionless scattering amplitude f(5, 6), defined by

f(B, 0) = F(k, 9)/a. (2.2)

The continuity conditions for the wavefunction and its
normal derivative at the boundary lead to the well-
known expression (cf. e.g., Ref. 17):

MW@FWth>—AHth> .
mP(BLIn" 1" B) — Nm'jl(oo]’ '
where In’ denotes the logarithmic derivative, j, and
h; are spherical Bessel and Hankel functions, and we
have introduced, in addition to (1.2), the dimension-
less parameter o associated with the internal wave
number:

=

o« = Nka = N§. (2.4)

Applying Poisson’s sum formula [N, Eq. (9.57)] to
Eq. (2.1), we find

f (B, 9)“— z (=n

m=—0u0

x f [1 — S(4, B)IP,_i(cos H)e*™ 1 dA,
0

2.5)
where
HP(B) (281~ N

S(4, B) = — . (26
R i

and we have introduced the following notations:
[x] = In" J,(x), 2.7)
[1 x] = 1n" HP(x), 2.8)
[2 x] = In’ H¥(x). (2.9)

We have also gone over from spherical to cylindrical
Bessel and Hankel functions. The physical values of 4
are l=14+1,1=0,1,2,---

The ordinary Watson transformation [N, Egs.
(2.7) and (2.11)] yields

2dA
cos (7h)
(2.10)

(6, 0) = ﬂfu—azmmAwwwm

17 H. M. Nussenzveig, Nucl. Phys. 11, 499 (1959).
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or, equivalently,

F6.0) =1 f [1 = SGi, PIP, 4(—cos 6) —E2- ( l)

(2.11)
where C is the contour shown in Fig. 1.
The representation (2.10) is equivalent to (2.5),
as we see by employing, along the upper half of C,
the expansion

1
cos (md)

=23 (=)™ exp [i@m + DmA] (2.12)

m=0

and, along the lower half,

1

= — 5 —-nH™ j 7i).
cos () 2 ¥ (—=D™exp [iCm + D)7i]

m=—c0

(2.13)

By substituting the same expansions in (2.11), we
find that (2.5) is also equivalent to

(6. 6) = z( oy f "Il = S(4 )IP;_4(—cos )

x exp [i2m + DwAlAdA. (2.14)

In order to apply the modified Watson transforma-
tion (N, Sec. 1X.D) directly to (2.5), we have to locate
the poles of the meromorphic function S(4, f) in the
complex 4 plane. According to (2.6), they are the
roots of

[1 8]

By interpreting N in accordance with (1.6), they
may also be identified with the Regge poles for a
square potential well (N > 1) or barrier (N < 1).

= N[«). (2.15)

&
&
X,
S§ N
‘ X2
" & ‘ -

5
ISSS

Fi1G. 2. Subdivision of the 4 plane into regions (regions 6a and 7a
refer only to Sec. 3B).

The Regge poles associated with the square-well
potential have been investigated by many authors,18-2
For N <1, they have also been investigated in
connection with the scattering by a dielectric cylinder.?2

A detailed discussion of the pole distribution turns
out not to be very relevant for the present problem,
although some features of it will be required later on.
On the other hand, such a discussion is very instructive
in connection with the analytic properties of scattering
amplitudes in potential scattering. The reader who is
not interested in this connection may proceed directly
to Sec. 3.

Instead of solving (2.15) to determine the poles
A.(B) of S(4, B) for fixed (physical) §, one can also
fix A at a physical value, A =/ 4 4, and solve with
respect to B, to find the poles 8,(/) in the complex
B plane. This has been done explicitly for the lowest
values of /.17 The two sets of poles are related to each
other (Ref. 21, Chap. 14), and we shall make use of the
known results on the poles 8, to help in the physical
interpretation of the poles 4,,.

We are interested mainly in the Regge-pole distri-
bution for § > 1. The case N > 1 will be considered
first. The physical interpretation of the results becomes
simpler for N 3> 1, corresponding to an optically very
dense material or to a very deep potential well.
Accordingly, we shall assume that

a>> B> 1 (2.16)

To solve (2.15), we replace the cylindrical functions
by their asymptotic expansions, given in N (Appendix
A). Corresponding to N, Fig. 15, the 1 plane is
subdivided into seven regions, as shown in Fig. 2.

18 C. J. Bollini and J. J. Giambiagi, Nuovo Cimento 26, 619
(1962); 28, 341 (1963).

i% A, O. Barut and F. Calogero, Phys. Rev. 128, 1383 (1962).

20 A, Z. Patashinskii, V. L. Pokrovskii, and I. M. Khalatnikov,
Sov. Phys.—JETP 17, 1387 (1963).

21 R. G. Newton, The Complex j-Plane (W. A. Benjamin, New
York, 1964), Chap. 12.

22 W. Streifer and R. D. Kodis, Quart. Appl. Math. 23, 27 (1965).
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(In the present section, regions 6a and 7a are not to
be distinguished from 6 and 7, respectively; this
distinction Wwill arise only in Sec. 3B.)

Outside of the shaded regions, we find:

[«] &~ (A2 — a)P/a, (2.17)
1Bl ~ —(A2 — A1%/B, inregion 6, (2.18)
[1 8] ~ (A2 — B»}/B, in region 7, (2.19)

so that (2.15) becomes (A2 — a2} = 4 (42 — p2)},
and therefore has no solutions.

The solutions must be located in the shaded regions,
where either the left- or the right-hand side of (2.15) is
rapidly varying, because they contain the zeros of
HI(B) or J,(w).

Let us begin with regions 1, 2, and 3, where the
zeros of J,(e) are located. In 1 and 2, for

o — |4 > ad, (2.20)

we have, according to N, Eq. (A16):

(o

_ }'2)% o
[] ~ — &= [fp(z, a) — ~} 2.21)
& 4

where
o(d, x) = (x* — ¥ — Lcos™t (A/x), (2.22)
with
(x2 — B >0, 0<cos(Ax) < /2,
for —x<i<x. (223
In region 1, for

12~ B> B4,

Eq. (2.18) is valid as a first approximation; however,
in this approximation, we would find poles located on
the real axis. To get the imaginary part of the poles,
which is a small correction, we need an improved
approximation for [l f] in region 1. Under the
condition (2.24), we have®

HP(B) ~ 2fmEa2 — gyt

x {exp{y(4, p)) — iexp [—9(%, D)1}, (2.25)
where [cf. N, Eq. (A2)]:

(2.24)

2 _

W(d x) = (22 = x) — Aln [11 + 9——"-)—} (2.26)
x X

The branches of the many-valued functions that have

to be taken are specified in N (Appendix A). In region

1, with (2.24), we have

Rey(4, ) <0, lp@A,BI»1,  (227)

so that
2 _ gyt
w i~ -2

23 G. N. Watson, Theory of Bessel Functions (Cambridge Univer-
sity Press, Cambridge, England, 1962), 2nd ed., p. 267.

— 2iexp [29(2, M1}, (2.28)

where the exponential term is the small correction to
(2.18) that is required to determine the imaginary
part of the poles.

Substituting (2.21) and (2.28) in (2.15), we find

tan {(p(l, o) — ‘ﬂ

22__ ﬁZ
B (az — A

3
){1. — 2iexp 2y(h AL} (2.29)

Let
Ay =&, + i, (2.30)

be the roots of (2.29), where [1,/&,| < 1. Then, to a
very good approximation,

T ~1 Ei _ ﬂz i
(€, ) ~ nm + 2 + tan I:(oc_;——é'i) :}, (2.3
2 — &yt - g
T @ = B cosTH(E,fa)
where n takes on integer values. To determine the
real part of the poles, the real transcendental equation

(2.31) must be solved. The corresponding imaginary
part is then given by (2.32). In particular, for

exp [29(£,, B)], (2.32)

BKEKa, (2.33)
these equations simplify to
x — (&, + D7/ ~ nm, (2.34)
4&, (e \¥En»
" (2&) @39

Thus, we find in region 1 a series of poles located
very close to the real axis. The spacing between two
consecutive poles, according to (2.31), is given by

A&, ~ wjcost (€,Je) (=2 for &, Ka). (2.36)

According to (2.35), the poles get closer to the real
axis as &, increases.

These poles have a simple physical interpretation in
terms of resonances. Optically, they correspond to the
“free modes of vibration of a dielectric sphere”
[see Refs. 24 (p. 73) and 25]. Their long lifetime is
made possible by the high internal reflectivity, due
to the large refractive index, and by the high centrif-
ugal barrier, due to the large angular momentum.
The resonance appears when the corresponding pole
lies close to a physical value of .

In the quantum-mechanical interpretation, (2.16)
corresponds to a very deep potential well, and the
poles (2.30) correspond to resonances lying below the
top of the centrifugal barrier. Under these conditions,

24 p_ J. Debye, Ann. Physik Ser. 4, 30, 57 (1909).
28 G. Beck and P. Wenzel, Z. Physik 84, 335 (1933).
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the effective potential (1.9) represents a deep well
surrounded by a high barrier, thus giving rise to
sharp resonances.

The corresponding poles in the § plane are obtained
by setting A =/ + } in (2.29) and solving for 5. We
find that Re f, is determined by the well-known
resonance condition (Ref. 26, p. 382):

NReg,— (I+ %)7—27 ~ nm, (2.37)
which is equivalent to (2.34). We also find a result
analogous to (2.32) for Im §,,:

Im f,0c exp 29(I + 4, Re §,)] = exp Qy,) = v,,
(2.38)

where v, is given by (1.11) and v, represents the
penetration factor of the centrifugal barrier in the
WKB approximation [cf. Eq. (1.10) and Ref. 26,
p- 361]. This leads to the usual expression for the
width I", of the resonance (Ref. 26, p. 389).

In region 2, also assuming (2.24), we have, by
N, Eq. (Al6),

[1 8] ~ i(B? — A%)}B, (2.39)
so that (2.15) becomes
) ﬂ2 — )2 3
tan [p(4, o) — m/d] ~ —z(az - 12), (2.40)
or, since f K o,
m_ (= At
¢(d,, ) ~ nw + i l(m) . (241
In particular, for |4,| « 8, this gives
2~ (2n + 1) + 2B 242)
ar 2 7N

This corresponds to another series of poles with spac-
ing |A,| ~ 2, not so close to the real axis and with
almost constant imaginary part. Their real part is
again determined by the resonance condition (2.34).
These poles are associated with broad resonances
above the top of the centrifugal barrier. For the
corresponding poles in the # plane, we find

Img, ~ —1. (2.43)

This again agrees with the usual expression (Ref. 26,

p- 389) for the resonance width, with the barrier

penetration factor v, set equal to unity, so that the

width is determined only by the refractive index.

For / = 0, these poles have been discussed in Ref. 17.
In region 3, setting

= —u, (2.44)

26 J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics
(John Wiley & Sons, New York, 1952).

we find, by N, Eq. (A15),
2 ok
(o] ~ — &%)
oL
2sin (mp) — cos (mp) exp [29{u, @)
2sin (mu) + cos (mu)exp [2y(u, )]/’
and, since H)(x) = ¢ HV(x), Eq. (2.28) gives

W=
5 {

(2.45)

(18] ~ I — 2iexp 2y(u, pI}. (2.46)

Substituting into (2.15), we find, for p > «,
2 __ po 2
[u - 2i(ﬂ3) } sin ()
2u

2u?
(Gl A

so that the roots are located very close to the integers,
Uy, =n — €,, |e,| K1, and we finally get

2n? ea\2"
A, =— nw—n+——(—)
# (o — f)\2n

x [1 + ﬁ(;—’i)z} (2.47)

Thus, in region 3, there is an infinite number of
poles, which approach the negative integers faster
than exponentially as |4,| — co.

In region 4, let us consider first the neighborhood of

A= f. Let .
p A= B+ &"3[y, (2.48)
where we have introduced the parameter
y =@ <1, (2.49)

which is very small according to (1.1), and we assume
that |&[ = O(1). The asymptotic behavior of the
cylindrical functions under these conditions is given
in Appendix A. It follows from (Al) and (A2) that

[1 Bl ~ 7By Al (—&)/AI(—&),  (2.50)
where Ai (z) is the Airy function.
On the other hand, for Im 4 3 1, Eq. (2.21) gives

[2] ~ i(ax® — A2)}/a, (2.51)
so that (2.15) becomes
Ai(—8/AI' (=& ~ —e™ %M, (2.52)
where we have introduced the abbreviation
M=N*=1} N>1. (2.53)

According to (2.52), the roots lie close to the zeros
x, of Ai (—x). Let
Ai(—x,) = 0. (2.54)

§n=xn_€na
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Then, (2.52) yields

€, &~ —e™ % IM, (2.55)
so that (2.48) becomes
In & B 4 &"P(x,lv) + i/M. (2.56)

The first two terms of the (2.56) coincide with those
found for the Regge poles for an impenetrable sphere
[N, Eq. (3.5)]. Thus, as in that case, the poles (2.56)
must be associated with surface waves, with an
angular damping factor given by Im 4, (N, Sec. V).
The second term of (2.56) contains the radiation
damping due to propagation along a curved surface,
Since this effect depends only on the geometry (radius
of curvature), it is not surprising that it coincides
with that found for an impenetrable sphere. The
third term in (2.56) is the only one that depends on
the refractive index. It represents the additional
damping due to refraction of the surface waves into
the sphere. This is a small correction, provided that
the refractive index is not too close to unity, as expres-
sed in the second condition (1.1). We now see the
physical meaning of that condition: it implies that
the damping of the surface waves is determined mainly
by the geometry, and is not greatly perturbed by
penetration into the sphere.

Finally, let us consider the asymptotic behavior of
the poles for large A} in region 4. According to N,
Eq. (3.7), we then have

2 2%
g~ B o [W, g) — z—’ﬂ, (2.57)
while [«] is still given by (2.17). Thus, for [A] 3> o2,
Eq. (2.15) becomes

%
coth [Mn (%%) + t—:ﬂ ~ —1 4 (NP = 1)

ep 272
(2.58)
Let
An = P exp [i{(7[2 — €)], pnD> o (2.59)

Then, equating real and imaginary parts of (2.58),
we get

pn In 2p,leB) ~ nm, {2.60)

v —T Ly (—ZL) 2.61)
2in 2p,fef) n= MB
The solution of (2.60) has already been given in N,
Eq. (3.12):
na
N ——————————— + ..
In 2nn/ef)

Substituting these results in (2.59), we see that the
asymptotic behavior of these poles is again very
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F1c. 3. The Regge poles of S(4, B) for « 3> f 2 1. The physical
interpretation of the poles in the first quadrant is also indicated.
59—Class I poles; X —Class I poles.

similar to that found for an impenetrable sphere
[N, Eq. (3.13)]. Both Re 4, and Im 4, approach
infinity with »n, but

Re A,/Im 1, = O[(In n)~1]. (2.63)

The results for the poles in region 5 are very similar to
those found for region 4.

The complete pole distribution for a > > 1 is
schematically shown in Fig. 3. We see that the poles
fall into two sharply differentiated classes: those
located near the real axis, along the curve J» will be
called Class I poles, whereas those located along the
curves # and A’ will be called Class II poles.

The Regge trajectories for these two classes of
poles also show quite different behavior.?® For Class 1
poles (called “physical” in Ref. 20), they behave
similarly to the well-known pattern of Regge tra-
jectories for Yukawa-type potentials.*® For a suffi-
ciently deep well, the “right-most” poles in the right
half-plane move along the real axis at negative
energies, giving rise to bound states, and they leave
the real axis, going into the first quadrant, at positive
energies, giving rise to resonances. At finite energy,
there is only a finite number of Class I poles in the
right half-plane. However, in contrast with Yukawa-
type potentials, the trajectories do not turn back as
# — oo, but proceed to infinity in the right half-plane.

The trajectories of Class Il poles (called “unphys-
ical” in Ref. 20) behave quite differently. At finite
energy, there is an infinite number of these poles,
with unbounded real parts, in the first quadrant.
As f— 0, they all move towards the origin, so that
they have “0-type” trajectories, in contrast with Class-
I poles, which have “C-type” trajectories (cf. Ref. 21,
pp- 66, 99, 100).

The physical origin of the different behavior of the
two classes of poles is now clear. Class I poles are
associated with the “interior” of the potential, i.e.,



90 H. M. NUSSENZVEIG

with its behavior for r < a. This is why they resemble
the usual Regge poles for Yukawa-type potentials.
Class II poles, on the other hand, are by no means
unphysical. They are associated with surface waves,
as has been discussed in detail in N. They are insen-
sitive to the behavior of the potential in the internal
region, and are almost entirely determined by the
geometrical shape of the surface.

These results help us to understand the origin of a
very puzzling feature in dispersion theory, namely, the
radically different analytic behavior of scattering
amplitudes for cutoff potentials and for potentials
with tails extending to infinity (e.g., Yukawa type).
One can argue that cutting off an exponentially
decreasing potential at sufficiently large distances
should produce negligibly small physical effects,
and yet it drastically alters the analytic behavior.
This has always been regarded as an unphysical
aspect of dispersion theory, reflecting the instability
of analytic continuation.

It is now seen that the effect is at least partially due
to the appearance of surface waves as soon as a
cutoff is made. For Yukawa-type potentials, it is the
finiteness of the number of Regge poles in the right
half-plane that leads to polynomial boundedness of
the scattering amplitude in momentum transfer and
therefore to the Mandelstam representation. For
cutoff potentials, the existence of an infinite number of
Class II poles in the right half-plane at any finite
energy gives rise to an essential singularity at infinity
in the momentum transfer plane, so that the Mandel-
stam representation is no longer valid.?’

It can still be argued that a sufficiently rapid expo-
nential decrease is physically indistinguishable from a
sharp cutoff, and should therefore give rise to effects
resembling those of surface waves. However, this can
only be true over a bounded energy range. In fact,
“sufficiently rapid” means that the range of the
exponential is much shorter than the wavelength,
which ceases to be true at sufficiently high energy.
On the other hand, cutoff potentials can support
surface waves at arbitrarily high energy. This is
related with the existence of an infinite number of
Class II poles.

Finally, let us briefly consider the pole distribution
for N < 1. We restrict ourselves to the case N « 1
(corresponding to a very high potential barrier),
50 that

B> a1l (2.64)

A detailed investigation of the pole distribution for
N <1 has been made by Streifer and Kodis.??
Figure 4, based on their results, gives a schematic

27 H. M. Nussenzveig, Ann. Phys. (N.Y.) 21, 344 (1963).
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F1G. 4. The Regge poles of S(4, ) for §# 3> « 3 1. The physical
interpretation of the poles in the first quadrant is also indicated.
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(cf. Sec. 3D).

representation of the pole distribution when (2.64)
is valid.

The main difference with respect to Fig. 3 is that
parrow resonances now occur also at low values,
rather than only at high values of the angular momen-
tum. In fact, for 4| « a, the poles are approximately
given by [cf. Eq. (2.42)]:

Ao~ Qafm) — (20 + 3) + QijmN,

which is close to the real axis for N « 1.

These poles correspond to Fabry-Perot type
resonances immediately above the top of the barrier.
The corresponding poles in the § plane, for / =0,
are given by Ref. 17 {Eq. (18)].

In the second quadrant, the poles again tend to
approach the negative integers; (2.47) remains valid
for N < 1.

3. THE DEBYE EXPANSION
A. Derivation

If we try to apply the modified Watson transforma-
tion, as developed in N (Sec. IX.D), directly to (2.5),
we are immediately confronted with the following
difficulty: in contrast with the case of an impenetrable
sphere, a large number of Regge poles lie close to the
real axis (cf. Figs. 3 and 4). Therefore, if we succeeded
in reducing (2.5) to rapidly convergent contour
integrals plus series of residues at the Regge poles,
as in N, the residue series would still be slowly
convergent. According to (2.36), the number of poles
located very close to the real axis in the first quadrant
is of the order of (N — 1)§. Thus, the minimum
number of terms to be retained in the residue series
(even without considering the infinite number of
poles in the second quadrant) would be of the same
order as in the original partial-wave series. Physically,
this corresponds to the fact that a large number of
partial waves can be near resonance at high frequency.

(2.65)
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F1G. 5. Path of an incident ray 1 according to geome‘trica] optics
(N>

Another way to see the origin of this difficulty,
which also provides a clue to its solution, is to
consider the contour integrals resulting from the
transformation. In N, these contour integrals were
evaluated by the saddle-point method, and the saddle-
point contributions were found to correspond, in
first approximation, to the results given by geometrical
optics.

In order to apply geometrical optics to the present
problem, we have to consider the path followed by a
ray incident upon the sphere. This path is indicated in
Fig. 5. An incident ray 1 is partially reflected (ray 1)
and partially transmitted into the sphere (ray 2).
Ray 2 in its turn undergoes partial internal reflection
(ray 3) and partial transmission to the external region
(ray 2'), and so on. This gives rise to an infinite series
of multiple internal reflections, analogous to multiple-
beam formation in a plane—parallel plate. The geo-
metrical-optic solution outside of the sphere is
constructed by superposing the contribution from the
incident ray 1 with that from the directly reflected
ray 1’ and those from all transmitted rays 2, 3', - - -.

Thus, in contrast with the impenetrable-sphere case,
where only direct reflection takes place, each incident
ray generates an infinite series of geometrical-optic
rays, which should correspond to an infinite number
of saddle points. In the geometrical-optic description,
the total interaction of a ray with the sphere is broken
up into an infinite number of interactions with the
surface. ,

This is the clue to the resolution of the difficulty:
in order to have a parallel with geometrical optics,
we must look for a. description in terms of surface
interactions. This was first done by Debye!® for a
circular cylinder; his procedure was applied to the
sphere by Van der Pol and Bremmer.'°

For each multipole order /, we consider an incoming
spherical wave of this order that strikes the surface
of the sphere at r = g and is partially reflected and

partially transmitted. In order to evaluate the reflec-
tion and transmission coefficients of the interface
purely in terms of a surface interaction, we must
regard it as an interface between two unbounded
media, by solving the radial equation in a fictitious
one-dimensional space, in which r ranges from — oo
to co. If I and 2 denote the interior and exterior of the
sphere, respectively, there will then be only a trans-
mitted wave in medium 1, so that we have

_ [Pk
Yo = AI: h(B) + Resll, B)

h{P(kr)
h(B)

}, G.1)

h{®(Nkr)
hi® (o)

where p, ; denotes the radial wavefunction in medium
i for multipole order /, R,,(/, ) is the external spher-
ical reflection coefficient,and T,,(/, f) is the spherical
transmission coefficient from 2 to 1. The wave-
function and its radial derivative must be continuous
at the interface; the coefficients are determined by
this condition. Letting

v = ATy, B) , 3.2)

I+ %=1, 3.3
we find
28] — N[24]
A = s
Ry:(4, B) A= NBal’ (3.9
T21('1’ 5) =1+ Rzz(la /3)
_up-pa
[L 8] — N[24]
all (3.9

 wBHP@HP B[ B — N[2a])’
where we have employed the notations (2.8), (2.9),
as well as the Wronskian relation

WIH(2), HP(2)]
= HP(HP(2)[2 2} — [L 2])) = —4i[wz. (3.6)
Similarly, by considering an outgoing spherical
multipole wave of order / in medium 1, we can deter-
mine the internal spherical reflection coefficient Ry,

and the spherical transmission coefficient Ty, from
1to2:

{1 f] — N[l «] v
Ryu(4, ) = — [1ﬂ]—-——N—[2_oc_] , 3.7
T(4, p) =1 + Ryu(4, B)
_ Nt — 24)
[l ] — N[2«]
41 (3.8)

" #pHO@HP@)([1 ] — N2o])
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For real 4, we have (reciprocity):
[Ru(4, B = |Ru(2, B, (3.9

On the other hand, for any A, real or complex, it
follows from the reflection properties of the cylindrical
functions with respect to the index [cf. N, Eq. (2.15)]
that ali the coefficients are even functions of 4:

R;(—4, B) = R;;(4, B); T“(——l, B) = T4, B);
iL,j=1,2. (3.10)

The conservation of energy (or probability, in the
quantum-mechanical interpretation) yields

A real.

oy [HE®) 4
R PP+ | 150 7
_ . 2 Hﬁll}(“) - 2__
= Ry(h, ) +‘H‘f’(ﬂ) ol /)| = 1. G.11)

These relations are valid for any real 4, as may also be
verified directly from the definitions of the spherical
reflection and transmission coefficients, with the
help of (3.6). Actually, the first equality in (3.11)
already follows from (3.5) and (3.8).

In the limit as the radius of the sphere goes to
infinity, the above coefficients approach the well-
known Fresnel reflection and transmission coefficients
for a plane interface at perpendicular incidence, as
they should:

Ros N1 L2

2 N+1" ™ N+1°

N—1 2
R »— -, a— 0. (3.12
N4+ Y O ON+I (312)

In order to expand the S function in terms of
surface interactions, we first subtract from (2.6) the
external reflection coefficient (3.4), rewriting the
result as follows:

(1)(5)
H(Z)(ﬁ) S(A ﬂ)

= NT21( ﬁ)

R22(2’ ﬂ)

[2a])

({o] =
({1 1 — Nla])

_ NTy(4 HHP @)L «] — [2a])
HPo)([1 1 — N[t a]) + HP(@)([1 f1 — N[2«])
(3.13)

With the help of (3.8), this becomes

(1)(‘3)
HP(B)

= Rzz(l, ﬂ) +

S(4, B)

H?’(a) T4, B)Tio(4, B)
HP(0) [1 — p(4, B)]

, (3.14)
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where

HP@ o
H(Z)( )
The Debye expansion is now obtained by expanding

the inverse of the denominator in (3.14) into a
geometric series:

HPB) (o
o ﬁ){ w2, B)

+ Tu(4, B T2, ﬂ)

p(4, ) =

Ryy(4, B). (3.15)

54, p) =

(a) p——l
Hi7 2P0 )

(3.16)

This expansion has a very simple physical interpre-
tation. The over-all phase factor H®(8)/H(B) ex-
presses the fact that the interaction takes placeatr = a
(rather than at r = 0). The first term R,, represents
direct reflection from the surface. The pth term
corresponds to transmission into the sphere (factor
Ty,), followed by going back and forth between r = a
and r = 0 p times [factors H'(«)/H?'(«) in p], with
p — 1 internal reflections at the surface (factors
R,; in p) and a final transmission to the outside
(factor Ty,). The origin acts as a perfect reflector
(due to the regularity of the wavefunction at r = 0).
The pth term of the Debye expansion represents the
effect of p + 1 surface interactions.

Before applying the Debye expansion, we must
first make sure that jt converges. For any finite real 4,
this follows immediately from (3.15) and (3.11):

Ip(Z, B)I = |Ru(4, )l < 1, (3.17)

In fact, the denominator of (3.8) has no poles for real
A, so that |T,] is strictly positive.

On the other hand, as 4 — oo, it follows from the
asymptotic behavior of Ti,, given in Appeudix B,
and from N (Appendix A), that

iy 0~ G ) o

A— o0, (3.18)

A real,

so that
lim [p(4, B)] = 1.

A= oo

(3.19)

Thus, in order to substitute the Debye expansion
in (3.5), where the integrals range from 0 to oo, we
must interpret the integrals in (2.5) as limits of finite
integrals:

dl = lim dl

A>w

(3.20)

For any finite A, accordmg to (3.17), the expansion
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is justified, so that we get

(B, 0) = fo(B, 0 +§fp(l3 0), (3.21)
where
m © B H()Q)(ﬂ)
g0 =5 3 o[- Ra)
X P,_y(cos 0) exp QimmA)A da, (3.22)
e =5 3 7] ve. pie. pr
X Pl_%(cos M exp QimmA)Adi, p>1,
(3.23)
where we have introduced
_ . (1)(“)H(2)(ﬁ) i
U, B) = Tu(4, B) HPHY(B) T4, B)
= U(—4, B), (3.29)

and all integrals in (3.23) are to be interpreted in
accordance with (3.20). Actually, when we discuss
the asymptotic behavior of the integrand of (3.23)
(cf. Sec. 5SA and Appendix B), we shall see that it
tends to zero faster than exponentially for 2 — > B3,
just like the integrand of (2.5), so that contributions
to (3.20) are very rapidly damped beyond this point
and we do not have to worry about the effect of (3.19).
This corresponds to the negligible contribution from
the partial waves in the domain (1.15).

Alternatively, one can also substitute (3.16) in
(2.14) [or apply to each term of (3.21) the same
transformation that led from (2.5) to (2.14)], with the

result:
0 H(2)(ﬁ)
(B, 0 —nm| |1 =22 R,
$o(B.0) = Ew( )l o ]
X P,_y(—cos ) exp [i(2m + 1)wA]A d4,
(3.25)
180 == 5 5 (1] UG plet 1
X Pl_,}(—cos 0) exp [iCm 4+ 1)wA]A d4,
p>1. (3.26)

Although the Debye expansion is convergent with
the interpretation (3.20), what matters in practice is
whether or not it is rapidly convergent. There are two
questions involved: first, whether the application of
the modified Watson transformation leads to rapidly
convergent results in the evaluation of each term
in the expansion [in contrast with its direct application
to (2.5)]; secondly, how rapidly the Debye expansion
itself converges.

We shall defer till later a discussion of the second
point. As for the first one, the trouble with (2.5) was
the slow convergence of residue series due to the
existence of many Regge poles close to the real axis.
In order to find out what happens for (3.21), our first
task is to determine the distribution of poles in the 4
plane associated with each term.

B. The Poles for the Debye Expansion

According to (3.22)-(3.26) and (3.4)-(3.8), the
same set of poles is associated with each term in the
Debye expansion. The poles are the roots of

[181=N[2a],

which differs from (2.15) by the replacement [«] —
[2 «], corresponding to the transition from standing
waves to travelling waves within the sphere, in accord-
ance with the physical interpretation of the Debye
expansion. Although the poles are the same for all
terms, their order varies from term to term: they are
of order p + 1 for the pthterm (p =0, 1,2, - ).

As we have seen in connection with (2.15), the roots
of (3.27) are located in those regions of the A plane
where either the left or the right-hand side is rapidly
varying. i.e., close to the zeros of H{V(f) (regions 4
and 5, Fig. 2) or to those of H{?'(«) (regions 6a and 7a,
Fig. 2). We shall denote by 4, the poles in region 4
and by 4, those in region 6a. (As the Regge poles
A, discussed in Sec. 2 will no longer be considered
from now on, no confusion should arise.) These
considerations already suggest that there will not be
many poles close to the real axis.

Since [1 4] and [2 «] are even functions of A
[cf. N, Eq. (2.15)], the pole distribution is symmetric
with respect to the origin, so that it suffices to deter-
mine the poles located in the right half-plane.

In region 4, Eq. (2.50) is valid, whereas we have

Ra] ~ —ia — Ao, if N>,
~ -0 — o, if N<1, (3.28)
assuming that |« — 3| > /35' [cf. (1.4)]. We then find
Ao~ B+ ¥ x,/y) —i/M, N>1, (3.29)

where M has been defined by (2.53). The correspond-
ing result for N < 1 is obtained by the substitution

M——iM', NI, (3.30)

(3.27)

where we define
M = (=N (N<I). (3.31)

As we found in connection with (2.56), the dependence
on the refractive index is a small correction when (1.1)
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FiG. 6. The poles associated with the Debye expansion for N > 1.
The path C’ refers to (4.10) and the path I'’ to (4.18).

is valid, so that the poles 1, are still very close to those
found for an impenetrable sphere.
Similarly, in region 6a, with

A= o+ e "(n2)kE, (3.32)
we find [cf. Eqs. (Al) and (A2)]
2o} &~ €QJa) Al (—&)/Ai (—8), (3.33)
and
[18] ~ —(8 = BB, if N> 1,
~ i~ YR, i N<1, (334
so that the same procedure yields
Ao~ e PN, ly) + NIM, N> 1, (3.35)

to which the substitution (3.30) is to be applied for
N<LIL

The pole distribution for N > 1 is illustrated in
Fig. 6. The asymptotic behavior of the poles 4, as
n— o is given by expressions very similar to (2.59)-
(2.62), and analogous results (with obvious modifica-
tions) hold for the poles 4;,.

Although the above approximations turn out to be
adequate for most purposes in the present paper, we
shall later require a better approximation to the poles
A,. Complete asymptotic expansions for both 4,
and 2. have been derived by Streifer and Kodis.?®
Their results for 4, are reproduced in Appendix A,
together with the Schobe asymptotic expansions for
the cylindrical functions, on which their work is
based. The case excluded by (1.1), in which [N — 1| ~
B~%, has also been discussed in Ref. 28.

C. Discussion

The poles 4, shown in Fig. 6 do not differ very
much from those found for an impenetrable sphere,

28 W. Streifer and R. D. Kodis, Quart. Appl. Math. 21, 285
(1964).
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so that we expect them to be also associated with
surface waves.

The poles 4, are located in the fourth quadrant,
where ordinary Regge poles cannot appear at positive
energy (Ref. 21, p. 51); their appearance is due
entirely to the Debye expansion. However, except
for their location in different quadrants, the pole
distributions for 4, and A, have several features in
common. This suggests that the poles 1, may be also
associated with surface waves. It will be seen in Sec.
4E that this interpretation is indeed correct.

The next step will be to apply the modified Watson
transformation to each term in the Debye expansion.
As has already been mentioned in Sec. 1, the dominant
contributions to the asymptotic behavior of each
term are usually of the same type as for an impene-
trable sphere, i.e., saddle-point contributions and
residue-series contributions. The former correspond
to the geometrical-optic rays in Fig. 5, so that for
each term there is a finite (and, at least for the first
few terms, small) number of saddle points. The latter,
according to Fig. 6, are rapidly convergent, since the
imaginary parts of 4, and 4, increase rapidly with .
Thus, the modified Watson transformation leads to
rapidly convergent asymptotic expansions for each
term of the Debye series, in contrast with (2.5).

There remains to discuss the second problem referred
to above, namely, the rapidity of convergence of the
Debye series itself. Insofar as saddle-point contri-
butions are concerned, they converge as rapidly as the
corresponding geometrical-optic contributions, shown
in Fig. 5. Their rate of convergence is determined by
the damping produced at each internal reflection,
i.e., by the Fresnel reflection coefficient at the inter-
face. (If the sphere is not perfectly transparent, there
is an additional damping of successive terms due to
absorption, which increases the rapidity of con-
vergence.) This in turn depends on the refractive
index and on the angle 0, in Fig. 5, i.e., on the impact
parameter of the incident ray. If we exclude the cases
N> 1, N K1, as in (1.3), the reflection coefficient is
small for most directions, leading to fairly rapid
convergence.

In the case of water, for instance, which will be of
particular interest later on, we have N as 1.33, and it
has been estimated by Van de Hulst (Ref. 4, p. 231)
that more than 98.5%; of the total intensity goes into
the rays 1, 2’, and 3’ of Fig. 5, corresponding to the
first three terms of the Debye expansion. The remain-
ing 1.59% must be distributed among higher-order
terms and residue-series contributions.

Thus, in this case, residue-series contributions
account only for a small fraction of the total intensity.
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This does not preclude them from being large within
narrow angular domains, concentrated about special
directions As will be seen in Paper II, this indeed
happens in the glory region, where residue-series
contributions become dominant over those associated
with geometrical-optic rays.

We shall postpone the discussion of the rapidity of
convergence of the Debye expansion for the residue-
series contributions until we have found out more
about their physical interpretation. It can already be
expected, however, that they will converge much more
slowly than the saddle-point contributions. In fact,
as one increases the impact parameter of the incident
ray, the reflection coefficient tends to increase,
approaching unity in the limiting case of total reflec-
tion. This happens at glancing incidence for N > 1
and at critical incidence for ¥ < 1. While the corre-
sponding incident rays are totally reflected in the
geometrical-optics approximation, it will be seen
later that they are precisely the limiting rays respon-
sible for the excitation of surface waves. According to
the above discussion, high reflectivity implies slow
convergence of the surface-wave contributions.

We can also note that |p(4, §)| in (3.17) is very close
to unity within the edge domain (1.14), from which the
residue-series contributions originate. Different damp-
ing mechanisms also arise in this case. In spite of the
relatively slow convergence, however, it is possible to
estimate the total residue-series contribution and to
find out its physical effects. We shall return to the
discussion of this point in Paper II (Sec. 6D).

D. Relation to Previous Treatments

Van de Hulst (Ref. 4, Chap. 12) applies the Debye
expansion directly to the partial-wave series. He shows
that the geometrical-optic contributions may be
obtained by applying the principle of stationary phase
to the domain (1.13); the forward diffraction peak
also arises from this domain. He also gives a heuristic
discussion of the contributions from the edge domain
(1.14) (Ref. 4, Chap. 17).

The Debye expansion combined with the Watson
transformation has been employed by several authors.
The results agree insofar as geometrical-optic contri-
butions are concerned, but they differ considerably in
dealing with the remaining contributions.

For N > 1, the treatments most closely related to
the present one are those given by Van der Pol and
Bremmer,!® Rubinow,'? and Chen.?? However, al-
though the method is potentially more powerful, the
results do not go beyond the derivation of the geo-

29 Y. M. Chen, J. Math. Phys. 5, 820 (1964).

metrical-optics approximation and the evaluation of
some residue-series contributions within limited an-
gular domains. No discussion of the domain of validity
of the results is given, and the transition regions be-
tween different angular domains are not considered. In
particular, the neighborhood of the forward and
backward directions is not treated. Rubinow and
Chen relate their results with Keller’s geometrical
theory of diffraction. However, the contribution from
the poles 1, is omitted in their work.

Several investigations of the transparent cylinder
or sphere problem have been made by Franz and
Beckmann,1-39-32 who propose somewhat- different
methods in each of them. They criticize Van der Pol
and Bremmer for substituting the Debye expansion
directly in the partial-wave series, claiming that |p|
is necessarily greater than unity for some partial wave
near 4 = «, so that the expansion diverges. However,
in view of (3.17), this criticism is unjustified: |p] < 1
for any real 4, and in particular at the physical points
A=1+4+3. 1It is true that |p| 1 as A— o0 [cf.
Eq. (3.19)], but this also happens for Franz and
Beckmann’s contours, as will be seen below, so that
an interpretation similar to (3.20) is required, although
they are apparently unaware of this.

The starting point of their method is the representa-
tion (2.11); actually, they treat Green’s function
rather than the scattering amplitude. They then
deform the lower half of the contour C (Fig. 1) into
the lower half-plane, bringing it down to the negative
imaginary axis' or to the negative real axis.?!'32 The
Debye expansion is carried out along the modified
contour.

This modification has a twofold purpose: (i) to find
a contour along which |p| < 1. As shown in Appendix
B (Fig. 21) one then has

lim p=20
[4]—> e
along the lower part of the modified contour, and it
can be shown that [p| < 1 along the negative imaginary
axis. (ii) To avoid the appearance of contributions from
the poles 4, . In fact, S(4, #) has no poles in the fourth
quadrant, so that no poles are captured when the lower
part of C sweeps across this quadrant, and the Debye
expansion is only made afterwards. Franz and
Beckmann claim that the residue series at the poles 4/,
have no physical interpretation, so that the poles are
unphysical and should not contribute to the solution.

30 W. Franz and P. Beckmann, Trans. IRE, AP-4, 203 (1956).
31 P, Beckmann and W. Franz, Z. Naturforsch. 12a, 257 (1957).
8 W. Franz, ‘‘Theorie der Beugung elektromagnetischer Wellen,”

{Sgrg'},)Angew. Math.,Band 4, §816 and 19 (Springer-Verlag, Berlin,
57).
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R, N,

Fic. 7. Modification of the contour C in (2.11) according to
Franz and Beckmann. The integrand tends to infinity in the shaded
regions, to zero elsewhere, apart from the poles X . The parameters
7, and 7); are defined by (B2).

To find out whether the modification proposed by
Franz and Beckman is allowed, we must consider
the asymptotic behavior of the integrand of (2.11)
as |A| — oo, which follows from Appendix B (Fig. 18)
and from N [Eq. (C8)]. The behavior differs from that
shown in Fig. 18 essentially by a factor 2%¢'*® for
ImA> 0 and Afe** for Im 4 < 0. It follows that
the integrand tends to zero everywhere, except in the
shaded region of Fig. 7.

Thus, while it is not possible to deform the lower
half of C onto the negative imaginary axis, as proposed
by Beckmann,! it is possible to move it across the line
of poles 2, (curve 7;-—7/[2) and into the region
where, p — 0 as |A} — oo (cf. Fig. 21, Appendix B).
This leads to the contour D shown in Fig. 7.

Furthermore, after making the Debye expansion
on D, it is possible, for the first term of the expansion,
to deform the part of D located in the upper half-
plane in order to obtain a path symmetric about the
origin, which is another requirement in Franz and
Beckmann’s method. [If we had started from (2.10)
instead of (2.11), it would have been possible to
deform the lower part of C onto the negative imagi-
nary axis. However, the last requirement could not
then be satisfied, because the integrand of (2.10)
(as well as the corresponding first term in the Debye
expansion) diverges as |4| — oo over a portion of the
upper half-plane, in such a way that no equivalent
contour symmetric about the origin can be found.]

However, a modified contour, such as they propose,
is not only unnecessary, but also inappropriate. In
fact, as was shown above, the condition |p| <1 is
already satisfied along any bounded portion of C;
it is unnecessary to get away from C in order to make
use of the Debye expansion. It is true that p —0
along the part of D located in the lower half-plane,

but we still have |p| — 1 as [A| — oo along the upper
portion of D. This is unavoidable, as shown in
Appendix B (Fig. 21).

Furthermore, it is neither possible nor desirable
to get rid of the contributions from the poles 4, .
This can be seen already for the first term of the
Debye expansion. As will be shown in Sec. 4, different
representations are required for 6 3> y and for 6 < y.
Franz and Beckmann’s representation, avoiding the
poles 4, , might be employed for 6 > y. However, it
cannot be continued to the domain 6 « y without
including contributions from these poles.

For N > 1, we shall see that the contributions from
the poles A, are negligibly small (and consequently
harmless). However, this is by no means so for N < 1.
In this case, as will be seen in Sec. 4, the residue
series at the poles 4;, play an important role, and they
have a clearcut physical interpretation. It will also be
shown (cf. Sec. 4E) that there is no possible way to
avoid them, since the contour that gives rise to the
saddle-point contributions necessarily sweeps across
the poles 4, as the scattering angle varies from 0 to 7.
We _conclude that Franz and Beckmann’s method is
not suitable for the present problem.

For N <1, there appears to be no treatment
related to the present one. Chen’s procedure for a
cylinder, in this case,* is to deform the path of integra-
tion, before making the Debye expansion, into the
path C’ shown in Fig. 4, thereby capturing the residues
at Regge poles located to the left and to the right of
C’, as well as at the poles located close to 4 =«
(exactly how many such poles are to be enclosed is not
specified). He then applies the Debye expansion on C’
and claims that all the integrals over C’ can be
evaluated by the saddle-point method (without further
residue-series contributions, because C’ is kept within
the lines on which 4, and A, are located), yielding the
geometrical-optic contributions. However, apart from
the fact that C’ is not suitable for saddle-point
evaluation, it is contained within the region where
|p| — oo (cf. Fig. 21, Appendix B), so that the Debye
expansion diverges. Thus, Chen’s method cannot be
applied.

Christiansen® starts with a contour similar to that
employed by Beckmann'; after subtracting out the
direct-reflection term, he deforms the path of integra-
tion for the remaining term [second term on the right
in Eq. (3.14)] into the first quadrant, capturing
the residues at the corresponding Regge poles.

33 Y. M. Chen, J. Math. Phys. 6, 1332 (1965).

3¢ p. L. Christiansen, Report No. 1, Laboratory of Applied
Mathematical Physics, Technical University of Denmark, Lingby,
1965.
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(a) N>1{

(b) N< 4

Fi1G. 8. Structure of the lit and shadow regions in the geometrical-optics approximation, for the first term of the Debye expansion. (a)
N > 1; p is the impact parameter of the incident ray that is geometrically reflected in the direction 6. (b} N < 1; in this case, there is an
additional shadow, bounded by the critically reflected rays L’ (§, = critical angle for total reflection).

He then makes the Debye expansion over the
resulting path of integration and applies the saddle-
point method. Here again the Debye expansion is
divergent on the resulting path. Furthermore, all
Regge poles in the first quadrant (Fig. 4) contribute
(not only those near A = «), and we have seen that the
corresponding residue series, for « 3> 1, converge no
better than the partial-wave expansion.

4. THE FIRST TERM OF THE DEBYE
EXPANSION

A. Preliminary Considerations

The first term of the Debye expansion is given by
either one of the equivalent representations (3.22)
or (3.25). In the geometrical-optics approximation,
it is associated with rays directly reflected from the
surface, without penetrating into the sphere, like the
ray 1" in Fig. 5.

To each term of the Debye expansion, associated
with a certain class of rays, there correspond, in the
geometrical-optics approximation, one or more “lit
regions” and one or more ‘“‘shadow regions,” the
latter being inaccessible to rays of this class (though
not necessarily to rays of other classes!). The structure
of these regions for the first term of the Debye
expansion is shown in Fig. 8.

For N > 1, at finite distance, we have the geo-
metrical shadow of the sphere, just as for an impene-
trable sphere. For the scattering amplitude, which
represents the field at infinity, this corresponds to the
single direction 6 = 0 [Fig. 8(a)].

For N < 1, there is an additional shadow, bounded
by the reflected rays L’ corresponding to the critically
incident rays L, that fall upon the surface at the critical

angle,

6,=sin?' N, N<L “4.1)
Beyond this region {Fig. 8(b)], total reflection occurs.
It will be seen in Sec. 5 that the complementary
region, 6 > 7w — 20,, is a shadow region for trans-
mitted rays, and this remains true for all terms of the
Debye expansion.

We shall see that around each shadow boundary
there is a domain of angular width A0, where the
transition from the lit region to the shadow takes
place. Foran impenetrable sphere (N), such transitions
were found to be described by “Fock-type” functions,
and the corresponding angular width was given by
(N, Fig. 14):

Ab ~ vy, “4.2)
where y is defined by (2.49). Transitions of this type
will be called “normal.” The scattering amplitude is
given by different approximations within a transition
region and on either side of it.

We shall consider first the case N > 1. The structure
of the first term should then be very similar to that
found for an impenetrable sphere, since the corre-
sponding class of rays does not penetrate within the
sphere. According to Fig. 8(a), different approxima-
tions should hold for 0 < 60 < Af and for A6 K
§ < =; for an impenetrable sphere, A6 was given by
(4.2) (N, Sec. IX.D), and the same is true here.

The corresponding representations for fy(f, 6)
can be derived from (3.22) and (3.25) by the same
procedure applied in N (Sec. IX.D). Let us define

H(p)

Sk 0 = s)

Rao(h, B) = &7S(—2, f). (4.3)
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Then, as in N [Eq. (9.59)], it follows from (3.22) that

S 6) =+ 3 (~1y
[3 m=0
X { ’ [e*™* — So(4, B)IP;_3(cos B)e* ™ *5 d2

+ L I = 84k, BIP,_y(cos B)et ™ dz}. (4.4)

The asymptotic behavior of Ry (4, B) as {A] — o
follows from Appendix B (Fig. 19). We find that
Ry, — —1inall regions, except for —n/2 < 4, < 72,
where Ry, — 0 like 272, Thus, except in this region,
we have

SO(‘L {3) g Simp(ln ﬁ) = “Hg.z}(lg)/Hy)(ﬁ)v

as Al o0, (4.5)

where Sj,,,(4, #) is the S function for an impenetrable
sphere [N, Eq. (3.1)].

Combining the above results with those given in N
for the asymptotic behavior of \S;, (4, f), we find that
e¥ i — S.(A, B) tends to zero at least as fast as ™
in the second quadrant, so that the path of integration
in the first integral of (4.4) may be shifted to the
positive imaginary axis. To do this, we have to sweep
across the poles — A, (Fig. 6), so that we get a corre-
sponding residue-series contribution. Let

¥5, = residue Sy(4, ﬁ)l Amiy -

Then, according to (4.3), we have

residue So(4, Az, = —e T r,,

(4.6)

so that we find

m=

B0 =23 (=
B m=o
tH
X { f [¥7* — So(4, B)IP;_s(cos B)e* ™ *2 d]
+ f "I = So(2, BIP,_3(cos )2 dx}

+ 23 (=S A,
ﬂ m=0 n

x exp [—2i(m + DA, 1P, ._y(cos 0). (4.7)
Writing
e&ivl — 50(7\., 5) — eziﬂ —1 + 1 — So(}», ﬁ)

in the sum from m =1 to oo, and employing N

[Eq. (9.61)], we get, just asin N [Eqs. (9.62)-(9.65)},
. o
w80 =~ f So(h, B)P;_(cos O)A d

+ 1_; f[l — So(A, BIP,_i(cos B)2 dA

21 0 e2i7r).
ﬁ e 1 + ezi”
2 e e

+ 3 (=03 M,
ﬁ m=0 n

x exp [—2i(m + D7, 1P, ._3(cos §)
s @ o o0

+2 z(—l)m(f +], )[1 — So(h, B
,B m=1 {00 0

X e™TAp, i(cos 0)A dA.

P;_i(cos HA dA

(4.8)

It follows from (4.3)-(4.5) that the asymptotic
behavior of 1 — Sy(4, B) in the first quadrant is the
samie as that for an impenetrablé sphere, so that, as in
N [Eq. (9.65)], the path of integration in the last
term of (4.8) can be closed at infinity, reducing it to a
residue series at the poles 4, in the first quadrant (Fig.
6). Similarly, we can split the path of integration in the
second term of (4.8) at 1 = § and combine it with the
first term, as in N [Egs. (9.67)-(9.69)], so that we
finally get

fﬂ(ﬁs 0) =f01 +f02 +f03 +ﬁ),rcs +f(:)’,res’ (49)
where

Ja(B, 0) + fou( B, 0)
= B
- [—; f S, P, 4(cos 0)2 d

o1

+ ifwll — So(4, B)IP;_y(cos B)A dA, (4.10)
B Je
i(#
Joa(B, 0) = — f P,_y(cos O)A dA + Ay, (4.11)
B Je
e 822'77/1

)y
A, 0) = ‘é g

Foned B0 =223 (=)™ S Ao

‘8 m=1
X exp (2imwA, )P, _i(cos 0),

f(’).res(ﬁ, 8) = 2—,5:}120(— l)m g l;'L"'(']n

x exp [—2i(m + D)7 ]P,; . _y(cos 6),
“4.14

P, _i(cos HAdA, (4.12)

(4.13)

and

Fon = residue Sy(4, B, - (4.15)
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The path C’ from 0,00 to § is shown in Fig. 6.
According to the above discussion on the behavior of
Sy(4, B), the path must begin at infinity to the left of
Ny — — (7 — 0)/2 (cf. also Fig. 10); in particular, any
direction ;00 in the second quadrant may be chosen.

The representation (4.9)—(4.14) is exact and, just
like its counterpart N, Eq. (9.78), it will be employed
for

0<6<y. (4.16)

To obtain the counterpart of N, Eq. (9.79), we might
proceed just as in N, by transforming (4.7), but it is
simpler to start from (3.25). By the same procedure
that led from (2.11) to (2.14), we find that (3.25) is
equivalent to

AdA
cos (md)’
(4.17)

fu(B, 6) = 51/—3 fcn — Sy(%, AIP,_4(—cos B)

where C is the contour shown in Fig. 1.

The asymptotic behavior of the integrand as
|A| — oo is essentially the same as that of (2.11),
illustrated in Fig. 7. Thus, we can deform the lower
half of C into the lower half of the contour I shown
in Fig. 6, going from —&o to 0 (I' is symmetric
about the origin). This gives rise to a residue-series
contribution from the poles 4;,. Similarly, the upper
half of C can be deformed into the upper half of I,
from 0 to doo, giving rise to a residue-series contri-
bution from the poles 4,,. The result is

1
780 = =5 [ 1t = 5. Py a—cos 0

y Ad2 _m S i ro, P;, 3(—cos 6)
cos(md) B cos (mh,)

_ 1_71 ) Pln'—%(—cos 0) (4 18)
Bw ™™ cos(mwAL) '

The integral can be split into two, corresponding to
the two terms within square brackets (both are
convergent for 6 > 0). The first of the resulting inte-
grals identically vanishes, because its integrand is
odd. The second integral can again be split into two
according to the identity [N, Eq. (C5)]:

P,_3(—cos ) = ie”""*P,_j(cos 6)
— 2i cos (7A)Q'4(cos 6). (4.19)

Again, both integrals are separately convergent for
6 > 0, and the first one identically vanishes due to the
antisymmetry of the integrand [cf. Eq. (4.3)].
Finally, substituting (2.12) in the first residue series

of (4.18) and (2.13) in the second one, we get

fo(ﬂ, 6) =f0,g +f0,res +f(;,res’ (420)
where
o0 = = [ i pOycos 2R, (421
gJr
fo,res(ﬁ’ 0) = - % i;o(—l)m z }“nr()n
x exp [i2m + 1)7wA,)P; _3(—cos 8), (4.22)
and
finol,0) = =222 3 (~1" 3 b,
x exp [—i(2m + D)7A,1P; . 3(—cos 0). (4.23)

In view of the symmetry property (4.3), we may
rewrite (4.21) as (cf. N, Egs. (9.75)-(9.76)]:

ForalB, 0) = B [ " Sulh BP, (—c0s )

X e " tan (7d)A dd, (4.24)
thus rendering manifest the regularity of all the above
expressions at f = =.

The exact representation (4.20)-(4.24) is the
counterpart of N, Eq. (9.79), and it will be employed
for

YL (4.25)

Together with (4.9)-(4.14), it allows us to determine
the asymptotic behavior of f,(8, 6) for 0 < 6 < 7 and
N > 1. The case N < 1 will be discussed in Sec. 4E.

B. Behavior for N > 1, 06 >y, 7 — 6 > ﬁ_%

Let us consider first the behavior of fo(8, 6) for
N > 1 and 6 not too close to 0 or . As in N [Eq.
(9.9)], we shall see that the approximations below are
valid for

8>y, m—0>p"1

In this domain, we empioy (4.20)-(4.24).

Let us discuss first the behavior of (4.21), which is
quite similar to that of N, Eq. (9.8), representing the
directly reflected wave in the geometrical-optics
approximation. As in N, Eq. (9.8), the main contri-
bution to (4.21) arises from the neighborhood of a
saddle point, located at [cf. N, Eq. (9.2)]

1 =kp = fcos (6/2). (4.27)

The physical interpretation is the same as in N
(Fig. 11): p is the impact parameter of the incident ray
that is geometrically reflected from the surface in the
direction 6; this is also shown in Fig. 8(a). We may
again employ the approximation N, Eq. (6.14) for

(4.26)
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HE(BIHP(P) and N, Eq. (C7) for Q¥ (cos 0).
There remains only to approximate Ry, in (4.3).

In the neighborhood of 4 = 1, we can employ the
Debye asymptotic expansion N, Eq. (Al6),
evaluate [1 8], [28), and [2«] in (3.4), with the
following result:

_ irp? p B
BlI Bl = (B — 7 Z?iﬁ+[w ﬁﬂ

(4.28)

To obtain [2 f], it suffices to replace i by —i, and
[2 «] is obtained by replacing 8 by «. Substituting
these approximations in (3.4), we find

((OL2 . 12)% _ (132 _ 12)1})

@ — A + (g -}

x[1+(52_

R22(}" /3) =

iA?
;1,2)%(0(2 _ 12) + :]
(4.29)

Finally, substituting all the above approximations
in (4.21) and making the change of variable

A= Bcosw, (4.30)
we get
ool ) = = (-E)
xfB@g&B)wpUﬂMm@ﬂdw,(43D
where

o(w, 0) = 2|:(w — g) cos w — sin w:l, 4.32)

V' N? — cos® w —smw)

VN = cos®w
% {] + iB[si:w +
4 cos’w 2WJ +O(ﬂ“2)},

(4.33)

B(w, f, 0) = sin w(cos w)’(
cos®w + sin w

cot 0
2cosw

§cos w

3sin®w

sin w(N? — cos

and the path of integration is the image of I'" (Fig. 6)
in the w plane. For the application of the saddle-point
method, the path is shifted so as to cross the real axis
at the saddle point (4.27), i.e., at w = 0/2, 0 < w <
/2, at an angle of —=/4 with the real axis.

The formula for the saddle-point evaluation of
(4.31), including the first correction term, has already

H. M. NUSSENZVEIG

been given in N [Eq. (6.21)]:

B eiéﬁ i B’ B &
fo B, 6) = — v iy
el (161 sin6) U 2816"ILB B |&

+3(5) + 5] o) @
uy)4w| o

where B, 9§, and their derivatives are to be evaluated
at the saddle point w = 6/2. Substituting (4.32) and
(4.33) in (4.34), we finally get

mmm=lﬂﬁ;@ﬁ@—QWﬂ
VN = cos® (6/2) + sin (8/2)
1
% exp (—2if sin (6/2)){1 + 2/5’[ @R

2N?® — cos® (6/2) 2 -
- ) . @
W—mwm4+wﬁ(“”

The main term of (4.35) is well known [cf. Ref. 12,
Eq. 39)]. In the limit N — joo, which would formally
correspond to an impenetrable sphere, both the main
term and the first correction term agree with the
résult found in N [Eq. (9.4)]. The main term differs
from that result only by the replacement of the re-
flection coefficient R = —1 for an impenetrable sphere
by the Fresnel reflection coefficient corresponding
to the angle of incidence 6, = (= — 0)/2 [Fig. 8(a)]:

sin (6, — 6,)
sin (6, + 0,)

JN

2 2 :

_ _ YN —cos (9/2) = sin(0f2) 3¢
VN% = cos® (6/2) + sin (6/2)

Let us consider next the residue-series contribution
from the poles 4,, given by (4.22). The poles 4, are
given by (3.29), with sufficiently good approximation
for our present purpose (a more accurate expansion
is given in Appendix A). The residues r,, follow from
(4.15), (4.3), and (3.4):

ron = 4if{mBHS(BP d(A,, B)} (437
d(4, ) = [1 ] — N[2 «], (4.38)

and the dot denotes a derivative with respect to 4;
we have also made use of (3.6).

The asymptotic expansion of all functions required
for the evaluation of (4.37) is given in Appendix A.
If we keep only the dominant term in each expansion,
we find

where

Fon & €% 27yal?, (4.39)
where we have introduced the abbreviation
a, = Al (—x,), (4.40)

and x, is defined by (2.54). If necessary, higher-order
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FiG. 9. Diffracted rays T,T;A and T,T;B in the direction §.

corrections to (4.39) can easily be computed, with the
help of Appendix A.

Substituting PAn_%(—cos 6) in (4.22) by its asymp-
totic expansion N, Eq. (C8), we finally get

= L2 \ —ir/4 o iyt
f0,res(ﬁ9 6) — ﬂ(sin 6) {e g \/A'n rOn exp (ano)

+ 3 (=D SV ron
L. N
X AoV "N
[exp (1 v, + 14)

;{ + Z ,

+ exp (z a¥m 14)]}

m=0,1,2,---. (442

In particular, in the lowest-order approximation, in
which ry, is given by (4.39), the above result becomes
formally identical to N, Eq. (9.5), the only difference
(apart from notation) being in the expression for the
poles 4,,.

The physical interpretation of this result is again the
same as in N: the incident rays tangential to the sphere
at T, and T, (Fig. 9) excite surface waves that travel
around the sphere any number of times, giving rise to
diffracted rays in the direction 6. The angles v2
correspond to the total arc described along the
surface (Fig. 9).

In the language of the geometrical theory of
diffraction,3® we can rewrite (4.41) as follows:

1 9
0,res ’0 = —i D;z ‘)m_ok
Joreed B 9) (Sine)%{ i3 D3 exp (i7,54)

+3(-0"3 D

X [exp (idvn) — iexp (id,p )]}, (4.43)

(4.41)

where
vE =2mm £+ 6,

3% B. R. Levy and J. B. Keller, Commun. Pure Appl. Math. 12,
159 (1959).
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is the square of the diffraction coefficient. (Our
diffraction coefficient differs from that of Levy and
Keller®> by an extra factor a*, to render it dimen-
sionless.) One factor D, corresponds to the excitation
of a diffracted ray (e.g., at Ty, Fig. 9), and the other
one to its reconversion into a tangentially emerging
ray (e.g., at T}, Fig. 9).

In the first-order approximation (4.39), Eq. (4.44)

becomes
eiﬂ/12

LN
D? ~ = (—) (449
@)ty 2w aP\p
This is identical to the result for an impenetrable
sphere [cf. N, Eq. (9.5), and Ref. 35, p. 170]. [Chen’s
result for a cylinder [Ref. 29, Eq. (1.42)], aithough
apparently different, can be shown to be equivalent
to (4.45), by employing Ref. 29, Eq. (1.44).] Thus, to
first order, not only the decay exponents, but also the
diffraction coefficients associated with this class of
rays are the same as those for an impenetrable sphere.
Finally, let us consider f; ...(58, 6), which is given
by (4.23). The expression for r;, differs from (4.37)
only by the replacement of 1, by A,. Taking into
account (3.33)-(3.35), we find

Fon & 2i(N[M)exp QM — 24, cosh™ N) (4.46)
and, similarly to (4.41),

fo.reslB, 0) ~ é(&%)

X 2_0(— n"y \/l_’n Fon €Xp (—2immA)

x {exp [—id,2m — 0) — i(=[4)]
— exp [—iA,0 + i(=/4)]}. (4.47)
Since Im 4, < 0, this is again a superposition of
rapidly damped surface waves; however, as Re 4/, >
0, they travel around the sphere in the opposite
sense to those in (4.41).
In order to estimate the order of magnitude of this
contribution, we may substitute 1/, by (3.35), taking

into account only the contributions from the first few
poles. We then find

So.red B, 8) . .
N2/ 2% 1
~2 ﬁ(ﬁ - 9) exp [—28(N cosh™* N — M)]

% i; (=™ S exp [—2e~"", cosh=* N(2/2)}]
x exp (—2immiy){exp [—id,0 — i(w[4)]

+ exp [—il,2m — 0) + i(7/D)]}. (4.48)
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Due to the presence of the over-all exponential
factor outside of the sum, as well as the rapidly
damped exponentials within the sum, f; (8, 0) is
exponentially small in comparison with f; ..(8, 6)
[cf. Eq. (4.41)], and may therefore be neglected. This
is true even for N close to unity, provided that
condition (1.1) is verified.

Although f, (8, 0) is completely negligible for
N > 1, it will be seen in Sec. 4E that this is no longer
true for N < 1. The result found in that case has a
well-defined physical interpretation. It will then
become clear that (4.48) represents the analytic
continuation of that result to N > 1, in which process
real rays are replaced by imaginary rays, giving rise
to the real exponentials in (4.48). Thus, there is no
reason either for calling this contribution unphysical
or for trying to avoid it, as was done by Franz and
Beckmann (cf. Sec. 3D).

Finally, let us show that the domain of validity of
the above approximations is indeed given by (4.26).
This follows from the following facts: (i) The Debye
asymptotic expansion (4.28) employed in the neigh-
borhood of 7 is no longer valid when 8 — 1 = O(y),

e., by (4.27), when 6 < y. Correspondingly, the
WKB expansion (4.35) is rapidly convergent only for
6 > y. (i) The asymptotic expansions of the Legendre
functions employed above are valid only for = —
> gt

C. Behavior for N > 1, = — 0 < g%

The procedure to be employed near the backward
direction is exactly the same as in N (Sec. IX.C).
We start from (4.24) to compute f; (8, 6). The only
difference with respect to N [Eq. (9.45)] is an addi-
tional factor — Ry(4, B) in the integrand. Since the
main contribution to the integral arises from |1 < gt
[N, Eq. (9.48); there was a misprint in this equation:
the exponent should read } instead of —3], we expand
—R,, in powers of 4, keeping only terms that yield

1/[N? — cos? (6/2)]F
)~ ==
fo(ﬂ, ) 2([N2 _

~— sin (6/2)
cos® (6/2)1 + sin (6/2)

H. M. NUSSENZVEIG

corrections up to O(8-1). The result [cf. Eq. (4.29)] is

—Ry(l, ) = (ﬁ—::—l) ( + N% +- ) (4.49)
Let B=m—c c<fpt (4.50)

Then, proceeding exactly as in N (Sec. IX.C), and
employing precisely the same notation, we find that
Jo.,(Bs 7 — €) is given by N [Eq. (9.51)], multiplied
by the over-all correction factor (¥ — 1)/(N 4+ 1),
and with the following additional term within the
square brackets:

- —N_f?f exp (—x?)J(wx) tan (rax)x® dx
1 e
=—1 i — 0(8™®, (4.51
vl B5) e (185) +oury, @sy
which arises from the term 2%[{(NB?) in (4.49). The
integral has been evaluated by the procedure given in
N, Appendix F.
Thus, we finally obtain, in the place of N [Eq.
(9.53)],

Jo.(B, ™ — )
1/N -1 . &
B 2(N + 1) o [ 215(1 8)]
x [1 PR (1485 ) +O(ﬁ‘2)],
2p NB
0<ex gt (452
This coincides with the expansion of (4.35) in powers
of €2, within the-domain € < f~%. Thus, precisely as in
N, we see that (4.35) is uniformly valid up to § = =.
In the backward direction, we get the reflection
coefficient (3.12).
The only modification that is necessary in f; ., and
fo.ces 18 the substitution of the asymptotic expansion
[N, Eq. (C8)] of the Legendre functions by the uni-

form asymptotic expansion [N, Eq. (C11)]. Finally,
putting together ali these results in (4.20), we obtain

) exp (—2if sin (6/2))

% {1 + El;i{sinal(e/z)

_ 2N* —cos*(62) O(B-*
[N? — cos® (6/2)]%} +00 )}

ey — 8 m o
-, (Sm 0) 2_0(—1) E(a 2 exp [i2m + DA, oA (m — 6)]

N2 m— O\
4 —
+ TrM(in@

xS (= 1)mz exp [—2e77 cosh™ N(/2)¥x,] exp [—i(2m + 1)mA, W o[AL(m —

m=0

)exp [—2B(N cosh™ N — M)]

),

N>1, yLKO0L 7, (453)
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which is uniformly valid throughout the whole domain
(4.25). We have employed the approximation (4.39)
for ry,; a better approximation may be obtained, if
necessary, from (4.37) and Appendix A.

The contribution from the residue series f .., is
very small, except perhaps at the lower end of the
range y K 0; that from the residue series f, . is
always negligible when (1.1) is satisfied.

D. Behavior for N > 1, 0 <0 y

In the domain 0 < 0 < p, we employ the repre-
sentation (4.9)-(4.14). Let us evaluate first the
contribution from (4.10). As we have seen in connec-
tion with the analogous terms in N, the main contri-
bution to the integrals in (4.10) arises from the
neighborhood of 4 = f, so that we may employ the
asymptotic expansions given in Appendix A.

In particular, it follows from (A1l) and from the
corresponding expansion for H{¥(x) (obtained by
changing i — —i everywhere) that

HP@) _
HY()

where

em/egz
1207 AX()

247 /3 A_(Z)
e
A(D)

Y 4+ 00h, (454

L=y —p),

and we have introduced the abbreviations

(4.55)

A = AL (@), A = (4.56)

We have also made use of the Wronskian relation
(Ref. 36, p. 446):

WIA(L), A(D)]) = if2m.
Similarly, employing (3.4), (All), (A12), and the

Al (€—2i”/3€).

(4.57)

So(B, 0) + foal B, 0) =
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analogue of (4.28) for [2 «], we find
in/6 40
Y "4 2
—Rop{A, B =1 — — — —
(4 F) 27MAA 2eMPAAT
I 2 1 et A
27M AA [(15 + 21\42)g YT
e ( _irz A )]
— —|2e — = O
60 A anda) [ o0,
(4.58)
where ) Bins .
A = AT (e¥7/%)). (4.59)

Finally, combining (4.3) with (4.54) and (4.58),
we find

A e—z:r/3
___S }L _ e2177/3 +
ok, f) = Yor MAzy

1 el;r/G C2 e~1ﬂ/6A/ .
ols it 5 )
efﬁr/3 2 1 C eirr/3 A/z

+ o e =
277M[(15 ZMZ)A2 t M? 4*
vur/3Ar .

~ Sy gl reen @eo

The corresponding expansion for 1 — Sy(4, B) can be
obtained by noting that [cf. N, Eq. (D3)]:
Jrs AL

A 4
In the angular domain under consideration, the

uniform asymptotic expansion [N, Eq. (C11)j of the
Legendre function becomes

s A
1— == (4.61)

P,_y(cos 0) = (Ofsin )1, + 0%,  (4.62)
where we have employed the abbreviation
Jo = Jo(B0 + (0])0) = So[BO(1 + 35D (4.63)

Substituting the above results in(4.10), we obtain

( 0 ){ 2z1r/3Jv (1 + 2€y2)_J0dé+em/3J‘ (1+1C 2) AI(OJOdg
Y sin 6

e—zn/3 y 11r/6 C2 e—w/G Ar
de+ | Tdad
o’ rA2 et (60 car JA3 °‘C>
—i7/3,,3 11!/3 A/2
+ez My[( i) e+ S S ot
T
ol G Jo dc} + ow“)}, (4.64)

where

J=Lr )

As we have seen in connection with (4.10), 0,00 may

(4.65)

3¢ Handbook of Mathematical Functions, M. Abramowitz and
1. A, Stegun, Eds. (National Bureau of Standards, Washington, 1964).

be any direction in the second quadrant. It is con-
venient to choose it in such a way that the integrands
in (4.64) decrease as rapidly as possible away from
{ = 0. It follows from the asymptotic behavior of the
Airy function [N, Eq. (D4)] that the best choice is

o, = &3, (4.66)
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so that the path I'" is composed of a straight line from
e*"20 to 0 and the positive real axis from 0 to oo,
as in N (Fig. 10). All the integrands in (4.64) then

behave like exp (—4 1] %)

for large ||, so that only the domain |{| < 1 gives an
appreciable contribution.

The first two integrals in (4.64) correspond to the
Fock-type functions ‘that appeared in N [Eq. (9.13)].
Both these and the remaining integrals can be reduced,
by partial integration, to generalized Fock functions,
defined by

_ eiﬂ/ﬁ Cm
Fm'"(ﬁ’ 0) - 27TJ;A12 (eZin-/az)

J(B0 + (6/n)0) d¢,
(4.67)

where m and n are integers. The reduction is per-
formed in Appendix C. Taking into account (C3)-
(C7), Eq. (4.64) becomes

Ja(B, 0) +foz(6/3, (1) o 1 ;
= "(m) [‘ ol 2M2)F°'1

1, 0) = i(i)%{l(l + L) Fou + 27_0p i

H. M. NUSSENZVEIG

2 - —iﬂ'/362
+2}_F1,1_—L(1+e )Fo,o

20 M 12M2

y i(4N? — 3))°
taole T

7/5p2

i
Foot 2 g, 4 «w*)]. (4.68)

IRPIYE 60M

On the other hand, fy,(8, 0), as defined in (4.11)-
(4.12), has already been evaluated in N [Eqs. (9.21)
and (9.70)]:

FoulB, 0) = z(ﬁ) T o6, (469

7

which corresponds to the well-known forward
diffraction peak.

The residue-series contributions are given by
(4.13) and (4.14), where the Legendre function may
be replaced by N, Eq. (C11). Taking into account (4.39)
and (4.46), and adding the results to (4.68) and (4.69),

we finally get from (4.9)

e—in/3g2
(e

sin 6/ {0 2M M 60
i(4N? — 3)y? e7/%0? ity i3
_(_8M3_y_ 1,0—@§Fo,z+m1’2,1+0(73)—

x 3 (=)™ 3 (a,)% exp QimmA,)o(A6) +

47 N2

v exp [—2B(N cosh™ N — M)]

x 3 (=)™ exp [—2i(m + Dwd,] exp [—2e7" cosh™ N(a/2)¥x,1Jo(A8), N>1, 0<0<y.
m=0 n

For N — ioo, this reduces to the result found for an
impenetrable sphere in N [Eq. (9.42)], where only the
first two terms of (4.64) were taken into account.

In particular, within the diffraction peak region
0 < 6Ky, we can expand the generalized Fock
functions in power series in the small parameter 6/y,
by substituting in (4.67) the Taylor expansion

T + 0D = S IV GO IpL. (7D

Since the main contribution to the integrals arises
from |{| < 1, the resulting series is rapidly convergent

for 6fy K 1.
It follows from N [Egs. (8.23) and (8.26)] that

(4.72)

ei:r/(i 4 dg _ M
2 fr A (g O T Pt

(4.70)

where

pM, ;=1 for p=0, M,=12551e"",

M, = 0.5323¢*"3 M, = 0.09352.  (4.73)

The values of the coefficients M are taken from
Wu,» who also computed them for higher values
of p.

Substituting (4.71) and (4.72) in (4.67), we find

Pt 0 =3 0, 20 () @79
p: Y

=0

Replacing the generalized Fock functions in (4.70)

37 T. T. Wu, Phys. Rev. 104, 1201 (1956).
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by their expansions (4.74), we find
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_ (O VB0 My i g IM@NT—3) o
fo(ﬂ,G)—t(sine){ : +[7 — o AMyy o+ 00"
=S (D S @) e Qi) |10
_ My Mo Ly, 1 c)zFJ104w)f , N>1, 0<0&y. (475
[y M+2(512 Mz)y+ 6" |2 150 (y)} L 00Ky, (479)

Here, we have approximated Jy(2,0) ~ Jo(80) in the
first residue series of (4.70), and we have entirely
neglected the contribution from the second residue
series, which is indeed negligible under the present
conditions.

For N — i, (4.75) agrees with N [Eq. (9.33)], to
the order of accuracy computed there. The first term
of (4.75), which corresponds to the forward diffraction
peak, again dominates the amplitude for § « y.

Finally, for 6 >> 9, (4.70) goes over smoothly into
(4.53). This has already been proved in N [Eq. (9.41)],
for the dominant term in the amplitude, which is the
same as here, so that the proof need not be repeated.

The results (4.53) and (4.70) give the value of fo(8, 0)
for all directions, 0 < 0 < 7. We see that the domain
6 ~ v is a normal (Fock-type) transition region. In
this region, tables of generalized Fock functions
would be required for a numerical evaluation.

E. Behavior for N < 1

Let us now take N < 1. In this case, as shown in
Fig. 8(b), all rays incident at an angle 6, > 0, are
totally reflected, where 6, is the critical angle, given
by (4.1). There is a corresponding shadow boundary
at 6 = 6,, where

6, =m — 20, =2cos I N. (4.76)

The same shadow boundary, as will be seen later,
appears in all the terms of the Debye expansion.

The existence of this shadow boundary leads to a
subdivision into three different angular regions:

() 60— 0,>» A0,
(id) 10 — 0, < AO; (4.77)
(iii) 0, — 0> A6

We shall see that the width A of the transition region
is again given by (4.2), although it is not a normal
transition. From the point of view of geometrical
optics, region (iii) is where total reflection occurs,
whereas only partial reflection takes place in (i).
Furthermore, there is still a forward diffraction peak
in region (iii), so that we still have to distinguish
6 > y and ¢ < y within it.

As shown in Fig. 10, the distinction between
regions (i) and (iii) is reflected in the position of the
saddle point associated with (4.21). The saddle point
2 is still given by (4.27), so that 2 < « in region (i)
(point , in Fig. 10) and 1 > a in region (iii) (point
A, in Fig. 10). The path of integration I crosses the
real axis at the saddle point, at an angle of —=u/4,
and it must begin and end at infinity outside of the
shaded regions in Fig. 10. [The asymptotic behavior
of the integrand of (4.21) follows from Appendix B
and from N (Appendices A and C). The shaded
regions are those where the integrand diverges at
infinity, where 1, and 7, are defined by (B2).) Thus,
as we go through the transition region (ii), the path I
sweeps across the poles 4,; consequently, as had
already been mentioned in Sec. 3D, there is no way to
avoid the contributions from these poles.

Let us consider first the behavior of fy(8, 6) in
region (i), still using the representation (4.20)-(4.23).
The corresponding path of integration I'; in (4.21)
(Fig. 10) does not differ in any way from the path for
N > 1, so that we obtain precisely the same result
(4.35) as before. The only question to be considered
is that of the domain of validity of this result.

The expression (4.29) for Ry, depends upon the
validity of the Debye asymptotic expansion for

n‘.‘_'i ImA "I,*—K" ,?2_.}
SN
! AN
2 ‘* J#*n
% F #
\¥\
.}7, ‘u ) Rei

»

-3 L)

T n‘l"%
F1G. 10. For N < 1, the path of integration in (4.21) must begin in
the upper half-plane, to the left of the shaded region, and end in the
lower half-plane, to the right of the shaded region, going over a
saddle point O that, for 8 > 0,, is to the left of A = « (e.g., at 1,)
and, for § < 0,, is to the right of 4 = « (e.g., at J,). X —poles.
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[2 «]. Thus,

Jo — 2] D o (4.78)

must be satisfied within the relevant portion of the
domain of integration. The distance of closest ap-
proach from A = a to the path of integration is of the
order of « — 1, so that (4.78) must be valid for 1 = 1.
Taking into account (4.27) and (4.76), this leads to

6 — 6, » Ny2/M’ 4.79)

where M’ is defined by (3.31). Exactly the same
condition is found from the requirement that the
first correction term in the WKB expansion (4.35),
involving the denominator

B(N? — cos? 0/2) = B(cos? (4,/2) — cos? (6/2))},
(4.80)

must be small.

According to (1.1), the domain (4.79) falls within
region (i). [It may overlap with (ii), depending on the
value of N.] On the other hand, as we have seen in
(4.52), the approximation (4.35) remains valid up to
0=

The contribution f ., from the poles 4, is still
given by (4.41), the only difference being that the
substitution (3.30) must be made in the expression
(3.29) for the poles. The physical interpretation
remains unchanged: these terms correspond to the

, TRANSITION

/  epaiow
/(i) ,

(i) PARTIAL , /

rerLecTioNn U, [ }6\/
REGION roy f)
/e
\ S U,

(a) 6)9‘t

H. M. NUSSENZVEIG

surface waves excited by the tangentially incident
rays, and, as before, their damping is determined
almost completely by the geometry.

In contrast with the case N > 1, however, the poles
A, now give a significant contribution, corresponding
to an entirely new type of surface waves. The result
for £ res is given by (4.23), where (4.46) is now to be
replaced by

fon &~ —(2N[M') exp (—2iM’'B + 2il,, cos™! N),

(4.81)
so that (4.48) becomes

f:’t)res(lg’ 0)
_2g7NE ( 2
M’ \Bsin 6

x (Sex (~iktto + 3 ("

%
) exp (—2iM’'f8)

X 2, [exp (—idndin) — iexp (—id, L)1

=0t (482
where
Fmn=2mm—0,+60, m=0,1,2,---, (4.83)
and 6, is given by (4.76).

The geometrical interpretation of the angles ],
and {7, is shown in Fig. 11(a). The surface waves in

(iii) TOTAL
REFLECTION REGION

(b) 8<e,

FiG. 11. Geometrical interpretation of (4.82) and (4.83). (a) The angles {10 and {1,; correspond to the rays RlslsiUl and Rgsss;Ug,
respectively (6 > 8,). The path difference with respect to the central path R,OU, is OA + OB. The subdivision into regions is also indicated.
The diffracted ray R,S,5:81U; appears in the second term in the Debye expansion [cf. Eq. (5.66)]. (b) For 8 < 8,, {1, is to be replaced by
¢ ;’,1 = 27 + {7.0. According to the geometrical theory of diffraction, the diffracted ray would propagate clockwise, as SIPS’I , corresponding

Lo =2r — {T1= —{i0.
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(4.82) are excited by the critically incident rays
R;S;, R,S,. Their complex propagation constant 4,
is given by (3.35), so that they travel along the surface
on the inner side, with phase velocity slightly smaller
than ¢/N and angular damping constant

~ (V3/2)(@/2)bx,,.

In terms of diffracted rays, the surface ray excited
by the critically incident ray R;S, gives rise to the
diffracted ray S;U, in the direction 6, leaving the
surface at the critical angle 6,, so that the arc S;S;
travelled along the surface corresponds to the angle
Lfo; similarly £ includes m additional turns around
the sphere. The path difference with respect to the
central ray R,OU, [Fig. 11(a)] is OA + OB =
2acos 0, = 2M'a, which accounts for the phase
factor exp (—2iM’p) in (4.82). Similar considerations
apply to the ray R,S,S,U,.

These diffracted rays obey a peculiar “law of
refraction”: although the magnitudes of the angles of
incidence and refraction are given by Snell’s law,
they have opposite signs: both upon entering and
upon leaving the surface, the incident and “refracted”
rays lie on the same side of the normal!

This result is in disagreement with the geometrical
theory of diffraction.’®3® According to this theory,
the diffracted rays associated with the- critically
incident rays R;S, and R,S, would obey the ordinary
law of refraction both at the point of excitation and
at the point where they leave the surface. This is
illustrated in Fig. 11(b), which refers to the case
6 < 0,: according to the geometrical theory of
diffraction, the diffracted ray would travel clockwise,
along the path S,PS;, corresponding to the angle

= —U{, according to the present results, it
follows the anticlockwise path S,QS;, corresponding
to the angle {,. Thus, although the entry and exit
points are the same, the results are quite different.

In the case of a plane interface (Fig. 12), a critically
incident ray RS gives rise, as is well known, to a
surface wave SV travelling along the interface in the
optically rare medium, so that the corresponding ray
obeys Snell’s law. At each point along its path (such
as 8', S” in Fig. 12), the surface wave sheds rays back

R

DENSE MEDIUM

RARE MEDIUM S SURFACE WAVE V

FiG. 12. The Schmidt head wave.
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into the dense medium at the critical angle, again
obeying Snell’s law. This gives rise to a conical wave
in the dense medium, the Schmidt head wave, which
has been investigated theoretically and experimentally
(Ref. 4, pp. 366 and 380).

Thus, if we approximate the sphere surface locally
by its tangent plane at the entry and exit points (as is
done in geometrical optics), we are led to the predic-
tion of the geometrical theory of diffraction. It seems
at first sight very surprising that the surface waves
actually found in (4.82) travel in the opposite sense
around the sphere.

It was precisely to avoid the seemingly “unphysical”
contributions from the poles 4, that Franz and Beck-
mann proposed their modified contours. However,
as has already been seen in Sec. 3D, their proposal
does not achieve its purpose, nor does it lead to the
diffracted rays predicted by the geometrical theory of
diffraction. Such rays would correspond to poles in
the first quadrant, near 1 = a.

Chen® has tried to identify such poles with the
Regge poles closest to 1 = « in Fig. 4, by enclosing
them with the contour C’ before making the Debye
expansion. However, as was mentioned in Sec. 3D, this
is not allowed, because the Debye expansion diverges
on C’ (also, C' is not suitable for applying the saddle-
point method). Furthermore, according to the
discussion in Secs. 2 and 3, the Regge poles associated
with the original partial-wave series have a very
different physicdl interpretation as compared with
those associated with the Debye expansion.

Streifer and Kodis® found surface waves similar to
those of Fig. 11(a) in the case of a dielectric cylinder,
but considered their physical interpretation un-
satisfactory.

Since the path of integration in the saddle-point
method must sweep across the poles 4, (Fig. 10),
it is clear that one cannot obtain the geometrical-
optics contribution without including also the contri-
butions from these poles, so that any attempt to get
rid of them is of no avail.

The interpretation of the surface waves found in
(4.82) in terms of diffracted rays disagrees with the
geometrical theory of diffraction only with respect
to the sense of propagation around the sphere. There
is, however, a very good physical reason why this
should indeed be so.

Physically, the role played by the surface waves is to
describe the field penetration into shadow regions:
their exponential damping is characteristic of the
shadow produced by a curved surface (cf. N, p. 83).

38 W. Streifer and R. D. Kodis, Quart. Appl. Math. 22, 193 (1964).
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They are always excited at the border between lit and
shadow regions on the surface. Therefore, one must
expect that surface waves always travel away from the
shadow boundary into the shadow (rather than into
the lit region). Otherwise, a smooth transition between
lit and shadow regions, with the exponential damping
starting at the boundary and proportional to the angle
of penetration into the shadow, would not be possible.

For an impenetrable sphere (N, p. 39), as well as
for a transparent sphere with & > 1, the requirement
of propagation into the shadow always leads to
agreement with the geometrical theory of diffraction.
For N < 1, however, the domain 6 > 0, is a shadow
region for transmitted rays [cf. Fig. 13(b)], and the
requirement that the surface waves excited at S, and
S, (Fig. 11) must propagate into the shadow leads
precisely to the sense of propagation that we have
found. The geometrical theory of diffraction would
lead to surface waves propagating into the lit region,
which is physically unacceptable.

Since the geometrical theory has met with consider-
able success in the treatment of a large class of prob-

[N? — cos? (6/2)]F — sin (6/2)
[N? — cos? (6/2)]F + sin (6/2)

Ammm—ﬂ

H. M. NUSSENZVEIG

lems, it would be interesting to modify its formulation,
taking into account the physical requirements about
the sense of propagation of surface waves. The local
behavior of aray is determined not only by the tangen-
tial plane, but also by the distinction between shadow
and lit sides.

We also see now that, although f, .(8,0) is
negligible for N > 1, the expression (4.48) is simply
the analytic continuation of the result (4.82) found for
N <1 [cf. Eq. (3.30)].

The domain where the residue series (4.82) is
rapidly convergent is determined by the condition

i.e., according to (3.35) and (4.83),
0—0,%» (NBy*t~7y.

Finally, in order to obtain expressions that remain
valid up to 6 = =, it is necessary to employ the
uniform asymptotic expansion [N, Eq. (C11)] of the
Legendre functions. Putting together all of the above
results, we finally obtain

(4.84)

) exp (—2ip sin (6/2))

8 {1 + i‘?[sina 10/2)

sin 6

e )= 5 )

Y
Y —0

> 4
x"éo(—l)mg(a;)_z exp [i2m + Dmwd, o[ (7 — 0)] + 4=i N (_6) exp (= 2iM'B)

X 3 (=)™ 3 exp [iAL0, — i2m + DA [Am — 6)], N<1, 6—0,>y.
m=0 n

Let us now go over to region (iii) [cf. Eq. (4.77)},
where, according to geometrical optics, total reflection
takes place. We again have to treat separately the
diffraction peak region 0 < 6 < y. For 6 3> y, we can
still employ the representation (4.20)-(4.23), but the
saddle-point path T, for the evaluation of (4.21) is
now on the other side of the line (Fig. 10) where the
poles 4, are located. Thus, we have to take into
account their additional residue-series contribution,
and (4.21) becomes

where fo,g(ﬂ, 6) =fl‘),g(ﬂa 6) _folo(/g’ 6),
Joslf0) = = [ Suh. Oy(e05 0)2.d2, - (487)

(4.86)

2 ’ I
mww=—fzwmw4mm
3 3
o —1]\\;, ( 3 :IZ 0) exp (—2iM'f)

X Z €xp (—il;ﬁ,o),

~ 2e

(4.88)

M’ sin

(4.85)

and we have made use of (4.81) and N [Eq. (C7)].
The last term should be grouped together with
So.res(B, 0), so that we have to make the following
replacements in (4.20):

fo.g _>j:),g; f(,),res _>f(,),res =f(/),r(-s = f(,),O’ (4.89)
where £ ..,(8, 0) is given precisely by (4.14). This
follows from (4.23), (4.88), and the identity N
[Eq. (6.33)].

According to (4.88), the substitution of f, .. by
f4 1 amounts precisely to subtracting out from (4.82)
the residue series in [f,, which would diverge for
6 < 0,. The first term in the remaining residue series
J4 e then corresponds to the angle &, , as it should,
according to Fig. 11(b). Thus, the residue series
Fa res is rapidly convergent forall 6 < 6,.

The saddle-point evaluation of (4.87) is entirely
similar to that which led to (4.35), except that, in
(4.29), we have to make the substitution

(o — A2)} — —i(A2 — @)}, (4.90)
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Correspondingly, (4.35) is replaced by
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7) ’6=_
Jo..(B, 0) 5

1 ([cos2 (6/2) — N*F — isin (6/2)
[cos® (6/2) — N2JF + i sin (6/2)

) exp (—2if sin (0/2))

i(2N2 — cos?(0/2))

8 {1 * il/ELin3l(0/2)

O,
(cos® (0/2) — Nz)%} + O )}
N<1, 6,— 0% NYIM, 0y, (491)

where the restriction on 6, — 6 arises in the same way as (4.79). As ought to be expected, we find the uni-
modular Fresnel reflection coefficient associated with total reflection [cf. Eq. (4.36)].
On the other hand, nothing changes in the residue series associated with the poles 4,, so that we finally

obtain [cf. (4.41)]

) exp (—2if sin (6/2))

1 {[cos® (6/2) — Nz]% — isin (6/2)
,0) ~ — ~
18, 9) 2([cos2 (6/2) — NIt + isin (6/2)
AT
% { + 2ﬁ,:sin3 (6/2) (cos? (02) — N?E
|
—in/4 ﬁ 27
+2e M’ (/9 sin 6

In the region 0< 6 <7y, where the forward
diffraction peak is contained, f,(8, 6) is still given by
(4.70), provided that we make the substitution (3.30)
and that (4.46) is replaced by (4.81) in the residue
series at the poles 4;,.

There remains only for us to consider the transition
region (i) in (4.77):

0 — 0, <y. (4.93)

In this region, the approximation (4.29) for Ry, is no
longer valid within the range of the saddle point:
the Debye asymptotic expansions have to be replaced

by [cf. (3.33)] %
2 o] ~ "3 (3) In' Ai(e 2%,  (4.94)
24

where
= Qo)A — a). (4.95)

The main contribution to the integral in (3.21) still
comes from the neighborhood of the saddle point

Z = Bcos (0]2) ~ Bcos (0,/2) = NB = a, (4.96)

so that we may replace 2 by « in slowly varying

2

foul(B. 6) ~ § exp (—2if sin (a/z)){

_2e,-,,4gv_%( 27 )*
M'\fsin 6

L+ 2
LN

a fwexp(—uz)

exp (—2iM'B) I exp (—idlio)), N<1, |6 —0)<y

n>ne

n i(2N2 — cos® (6/2))] + O(ﬂ‘2)} N %e"”“z(———y—f

7 sin 0

=i 3 @) exp (14,5) + 3 (=)™ 3 (@) exp (i2,7) — i exp (im;)]}

3 oo
) exp (=2IM') X (=)™ 3 [exp (~iK ) + i exp (~ididin)

N<1, 6, —6>y, 6>y (492)

factors. Thus, (4.29) is replaced by
L+ «*lIn’ Ai(e7573%)

Rys(4, B) ~ - 4.97
A Ay 7

in first approximation, where
W= N MY P <1 (4.98)

The remaining approximations employed in (4.31)
are still valid.

As 0 ranges through the transition region (4.93),
the saddle-point path of integration sweeps across the
poles, as shown in Fig. 10. Let us make the change of
variable (4.30) and expand everything around the
saddle point:

w— 62 = ey sin (6/2)]};

{=10— J2¢ Py, (4.99)
where
[~ % ©, = b (4.100)
14
Then, we finally get

In’ Ai (e‘2iw/3z + \/5 U/K) du}

1 — &*in Ai(e¥ Pl + J2ulx) ]
(4.101)
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(a) N>1
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{b) N<1

FiG. 13. Structure of the lit and shadow regions in the geometrical-optics approximation, for the second term of the Debye expansion,
corresponding to directly transmitted rays, such as 2. (a) N > 1; (b) N < 1. In both cases, the shadow boundary is 6, = = — 20, where

@, is the critical angle.

where n, is the last pole that has been swept by the
path of integration. When all the poles have been
swept (e.g., for § < 8,), their total contribution is
given by (4.88), so that the terms in (4.82) that would
be poorly converging are gradually subtracted out.
Otherwise, (4.82) and the corresponding expression
for £, res(B, 0) remain valid.

The first term (unity) in the expression within curly
brackets in (4.101) is the dominant one. The other
term, according to (4.98), is a small correction, which
contains the effects due to the poles not yet subtracted
out, as well as the corrections to the reflection co-
efficient. In fact, within the present order of approx-
imation, the poles correspond to the roots of the
denominator in the integrand. For 6 > 6,, there may
be several poles within the rarige of the saddle-point.

The asymptotic expansion of integrals containing
poles in the neighborhood of a saddle point has been
investigated by several authors (cf. e.g., Ref. 39).
The transition term representing the effect of the
poles can be expressed in terms of error functions
with complex argument. We shall not carry out this
procedure explicitly for (4.101).

As will be seen later, the structure of the transition
region is actually quite complicated, because all
higher-order terms in the Debye expansion lead to the
same shadow boundary for N < 1, so that all their
contributions should be taken into account.

This concludes the discussion of the asymptotic
behavior of fy(8, 0). We see that it can be determined
for all values of 8, 0 < 6 < =, both for N > 1 and
for N < 1.

39 B. L. van der Waerden, Appl. Sci. Res. B2, 33 (1950).

5. THE SECOND TERM OF THE DEBYE
EXPANSION

A. Preliminary Considerations

The second term of the Debye expansion is given by
either one of the equivalent representations (3.23)
and (3.26), with p = 1. In the geometrical-optics
approximation, it is associated with rays that are
directly transmitted through the sphere, without any
internal reflection, like the ray 2’ in Fig. 5.

The structure of the lit and shadow regions for this
class of rays is shown in Fig. 13(a) for ¥ > 1 and in
Fig. 13(b) for N < 1. In both cases, there is a shadow
region (shown shaded in Fig. 13), which is inaccessible
to directly transmitted rays. For N > 1, the shadow
boundary corresponds to transmitted rays associated
with tangentially incident rays at T, and T, [Fig.
13(a)]. According to geometrical optics, these rays
are critically refracted and reemerge tangentially at
T, and T,, respectively. For N <1, the shadow
boundary is associated with the critically incident rays
at S; and S,, which are totally reflected; it is the
same one already found for the first term of the
Debye expansion and shown in Fig. 8(b).

The direction of the shadow boundary is given in
both cases by [cf. Eq. (4.76)]

6, == — 26, G.1)
where 0, is the critical angle. Notice, however, that,
while 8, is given by (4.1) for ¥ < 1, it is given by

sin 6, = 1/N (5.2)

for N > 1.



SCATTERING BY A TRANSPARENT SPHERE. I

Thus, we expect to find three different regions, as in
@.77):

® 6 — 6, AG;
(ii) 16 — 6, < A6; (5.3)
(iii) 0, — 6> A9,

where A0 is the angular width of the transition domain
(ii) between the shadow region (i) and the lit region
(iii). We shall see that this is a normal transition, so

that A§ ~y. (5.4)

In the shadow region (i), the amplitude can be
reduced to a pure residue series. Since this region
extends up to & = =, we employ the representation
(3.26). Changing 4 to —4 in the sum from m = —o0
to —1, and taking into account (3.10), we find that
(3.26) becomes

£18,6) = —é A C fuu, B)P,_y(—cos By
x exp [i2m + 1)widlAdA, (5.5)

where U(4, f) is given by (3.24).
The asymptotic behavior of U(4, ) as 4] — o in
the upper half-plane is shown in Fig. 14. We see that

-; Vh-vx mA

R W////

— (- zq,hnmlznlzx/epl) : n

— A%
/ o n,l-ou
% -DMI.IH
x( 4 ‘
«

-0 / (139')

- 4ik N\ w4 t /I -0
= F 0o %P < e

(a)N>1
"la‘“g 'h""g

-x.* _>u{;( zq,znum/z..m/epl) ¥

\‘ \* —» 0O —0
4 = 1 I'
—tehel gae é‘ oo
Wt ﬂ\ ’ el 23
‘(e’:p) \ - \‘ / '(’lﬁg'
—0 \ Y . 0 e
AW . - &) 7
-B - o 3 « [ Re A
(bYN<H

FiG. 14. Asymptotic behavior of U(A, f) [cf. Eq. (3.24)] as |1| —
o in different regions of the Aplane. @ N > 1; () N< 1. U—> @
in the shaded regions and U — 0 elsewhere (apart from the poles).
The paths of integration in (5.11) and (5.15) are replaced by sym-
metric paths from — poo to poo prior to the saddle-point evaluation;
one-half of these paths is shown. X—poles; O—saddle point;
— — — steepest descent path.
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U — 0 everywhere, except in the shaded regions in
the neighborhood of the imaginary axis, where it
diverges like

exp (¢ [Al/In |A]),

On the other hand, according to N [Eq. (C8)],
e™*P, 4(—cos 0) behaves like ¢'*? as [1| — oo in the
upper half-plane, so that, for any 6 > 0, the path of
integration in (5.5) can be closed at infinity, reducing
the integrals to pure residue series:.

¢ = const > 0.

fl(ﬂ’ 6) = fl,res(ﬁ’ 6) + f;,res(ﬁ’ 0)’ (56)
where
Amwm——ffgoAWme%gmzm

x exp [i(2m + 1)mi]P,_y(—cos 6)}, ,
6.7
Ficesls 0) = — ?ixlwzmmdwum
x exp [i(2m + 1)wAP,_3(—cos B)}_, ..

(5.8)

[Actually, of course, we have to consider a sequence
of contours passing between the poles, as was done in
N (Sec. 1V). For a more careful discussion of this
point, see Ref. 40.} This representation will be em-
ployed in the shadow region (i).

In the lit region (iii), we start from (5.5). We shift
the path of integration to a straight line above the
real axis (from — oo + je to o0 + ie, € > 0), and we
substitute the identity N [Eq. (C6)]:

P, j(—cos 0) = —ie'"*P,;_j(cos 6)
+ 2i cos (mA)QP(cos B). (5.9)

[This shift is necessary because of the singularities
of Q‘”&(cos 6) on the negative real axis.] Taking into
account also the identity

> (—1)" cos (wd) exp [i(2m + 1)7wd] = §,
m=0
Imi>0, (5.10)
valid over the new path of integration, we find

U4, B)Q'?(cos 0)A di

oo--1€

.mnm=—§f

Z (-n™ 2 residues {AU(4, B)P,_j(cos 6)

m=0
x exp [2i(m + D)7dl}; ... (5.11)

In (5.11), the integrals containing P, (cos 6)
have been reduced to residue series at the poles

49 R. F. Goodrich and N. D. Kazarinoff, Proc. Cambridge Phil.
Soc. 59, 167 (1963).
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A,» — A, by closing the path of integration at infinity
in the upper half-plane. This is allowed, according to
Fig. 14, due to the extra convergence factor '"# in the
first term of (5.9). Furthermore, in the integral
containing Q{¥)(cos 0), the path of integration has
been shifted from (—oo + e, oo 4 ie) to a path
symmetric about the origin (—oo + je, o0 — ie),
by crossing the positive real axis, which is allowed,
because O, (cos ) is regular there.

If we now split the path of integration at the origin
and change A to —A1 over one-half of it, making use
of the identity

Q'24(cos 6) — Q*%)_j(cos 6) = i tan (wA)P,_s(cos 6),
(5.12)
which follows from (5.9), we find

_ /_; f T UG, BOPy(cos )2 di

—ao+1€

= l.;. f U, BP,_y(cos 0) tan (mA)i dA. (5.13)

Substituting this in (5.11), we see that the resulting
expression is regular down to 6 = 0.

By an entirely similar procedure, but employing,
instead of (5.9), the identity N [Eq. (C35)],

_3(—cos 6) = ie"""*P,_3(cos 6)
— 2i cos (mA)QMy(cos 6), (5.14)

we find

fi(B,0) = — é J e U(4, B)Q'P3(cos DA di

— i€

+ 27 i (=1)™ 3 residues {AU(Z, B)P;_3(—cos 0)
m=0 n

x exp [=2i(m + DmAl}_; ;.- (5.15)

where the residues are now taken at the poles in the
lower half-plane, A = —1,, 4= 4,. Similarly to

(5.13), we have
i 0-+Hi€
- éf U4, HQ:L4(cos B)A dA
= — % fooweu(z, B)P;_s(cos 0) tan (wA)A dA. (5.16)
0

The above expressions could also have been obtained
by starting from (3.23) instead of (3.26).

We shall see that the representations (5.11) and
(5.13) are appropriate in the lit region for N > 1,
whereas (5.15) and (5.16) will be employed for ¥ < 1.
Let us start by considering the behavior of the ampli-
tude in the shadow region for ¥ > 1.

H. M. NUSSENZVEIG

B. Behavior for N > 1 in the Shadow Region
@ —-06,>y

In this region, we shall employ the representations
(5.6)-(5.8). According to (5.7), (3.24), (3.5), and
(3.8), we have

32 m . c1m(4, B, 6)
1, res ’H =3 - ’
furlBi0) = "0 2 (=D 3 residue| BT o

(5.17)
where d(4, ) is given by (4.38) and

Aexp [i2m 4+ 1)wA)P;_y(—cos )
[HP(BHP ()] '

clm()" ﬁ, 6) =
(5.18)

A similar expression is valid for f] ,..(8, 6), with 4,
replaced by —4, . In both cases, the poles are double
poles.

The residue of the expression within curly brackets
in (5.17) at a double pole is given by (cf. Ref. 29,
Appendix II)

clm(z’ 18, 6) Cim [ Cim d
e B 1 I CA LY
[d(A, ) } & ( ) (5.19)

Cim d
where the dots denote partial derivatives with respect
to A and all quantities in the second member are to be
evaluated at the poles 4,,.

The evaluation can be carried out by employing the
asymptotic expdnsions N, Eq. (A16) for H?®(w),
N, Eq. (C11) for P, j(—cos ) and the expansions
for H{() and its derivatives given in Appendix A.
Retaining only the dominant term in each of these
expressions and neglecting corrections of order y, we
find the following final result. [The evaluation of the
dominant term in the residue-series contribution at the
poles 4, for an arbitrary term of the Debye expansion
will be carried out in Paper 11 (Appendix C).]

fl,res(ﬁ: 0)

¢ (m — B\
=~ 21 exp (2iM
lyM(sinG) P (2iMP)

residue {

8 éo(_ n” zn: (am) exp {id,[2m + D)7 — 6,1}

X {[@m + D7 — )[4, (7 — 0)]

+ i(m — O\ [A(r — )]}, 6—0,>y, 67,
(5.20)

where 0, is given by (5.1), (5.2), i.e.,
0, = 2 cos™ (1/N). (5.21)
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In particular, for = — 6> #, this result can be
simplified by inserting the asymptotic expansions for
the Bessel functions, which lead to

_ ein/m( y )%
M \xsinf

X exp (ZtMﬁ){z (@) o exp (i,410)

fl.l‘cs(ﬁa 6) I

+ 21('— l)m z (a;L)_2 +m eXp (”?"ng}.}‘m)

+ il5  exp (ilnc;,mn},
0—6,>y, 7m—0>»8" (522
where
ta=2mm—0,+ 0, (5.23)

as in (4.83) [but note that 8, is now given by (5.21)
instead of (4.76)!].

By analogy with (4.43), this result can be rewritten
as follows (cf. also Ref. 29):

Sires(B5 6)
= - 6)‘% exp (Zli\/lﬁ){"“lz D2D21D12

f exp (L) dy + z (=)™ S D2Dy Dy,
= n

f exp (iA05,,) de

—i f exp (i2Li.0) dqo}}, (5.24)
0
where D2 is given by (4.45) and
Dy Dy, = 2/M. (5.25)

The physical interpretation of these results in terms
of diffracted rays is illustrated in Fig. I5. The incident
rays tangential to the sphere at T, and T,, after
penetrating into the sphere at the critical angle 6,,
reemerge tangentially at T; and T, respectively,
defining the shadow boundary. At the points of
emergence, they launch surface waves, travelling from
the shadow boundary into the shadow. A typical
diffracted ray of this type is T,T,T,B in Fig. 15.

However, before penetrating into the sphere, a ray
can also describe part of its path as a surface wave.
Rays of this type are generated by diffracted rays
associated with the first term of the Debye expansion
(Fig. 9), which, after critical refraction into the
sphere, reemerge as surface waves, to complete the
remainder of their path along the surface, before
leaving it tangentially in the direction of observation.

A typical example is T,T7T/T/B in Fig. 14.
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FiG. 15 Physical interpretation of (5.22) and (5.24). The limiting
rays T,T; and T,Tj; that define the shadow boundaries excite surface
waves propagatmg into the shadow, generating the diffracted rays
T,T{T7A and T,T,T3B in the direction 6. The corresponding angles
described along the surface are (7.1 and i, respectively. There are
infinitely many other possible paths for diffracted rays belonging to

this class. One such path, Tg’f‘gf;’TgB, corresponding to the same
angle {§,0, is shown in broken line. The subdivision into regions is
also indicated.

Since the total angle (F, described along the
surface can be broken up into two parts in an infinite
number of ways, there is an infinite class of diffracted
rays of this type, and the resultant amplitude is the
sum of all their contributions. The contribution from
all paths such that an angle between ¢ and ¢ + dg is
described before critical refraction is proportional to
do. Since the maximum value of ¢ is the total angle
=, described, this accounts for the integrals appear-
mg in (5.24).

The factor D? arises from the excitation of the
diffracted wave (e.g., at T,) and its reconversion into a
tangential ray (e.g., at T,). The factors D,; and Dy,
represent the transmission coeflicients of surface
waves into the sphere (e.g., at "fz’) and out of the
sphere (e.g., at T)), respectively.

The factor exp (2iMp) represents the phase shift
corresponding to the *“shortcut” through the sphere
(e.g., T, T; or T;T7). The factor —i corresponds to the
phase decrease by m/2 experienced by a diffracted
ray such as T, T;T/A as it passes through the pole T,,
which is a focal point for diffracted rays.

According to (5.8), f] ..(B, 0) is given by an expres-
sion identical to (5.17)-(5.19), except that the residues
are now to be evaluated at the poles —4;,. Employing
the asymptotic expansion corresponding to (Al) for
H?(a), the Debye asymptotic expansion given in
N (Fig. 15), for H¥(#), and N [Eq. (Ci1)] for
PA_%( —cos 0), and keeping only the dominant terms,
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we find, with the help of (3.33)-(3.35),

SiveslB, 6) .
2078 N (’; in—e") exp 2Mf) 3 (~1)" 3 (a;)*
x exp {—iA,[2m + Dm — 2i cosh™ N]}

x {[2m + 17 — 2i cosh™ NJJ [A\(w — 6)]
— i(m — O, [A (7 — O]},
0—6,>y, 6L

In particular, for = — 6 > «%, this becomes

fi.res(/g’ 6)

1L 3
A ¢/ N ( Y )
M \msin 6

(5.26)

X exp M ﬂ){z (a,) %6 — 2icosh™ N)
x exp [—iA (0 — 2i cosh™ N) — i(w[4)]
+ 3 (=)™ 3 (@) *[@mm + 0 — 2i cosh™ N)

m=1 n
X exp [—iA,(2mm + 6 — 2i cosh™ N) — i(/4)]
— (2mm — 6 — 2icosh™ N)

x exp [~id,(2mm — 6 — 2icosh™ N) + i(vr/4)]]=,

6—0,>y, m—0>»a (5.27)

By comparing these results with (5.20)-(5.22), we
see again, as for (4.48), thatf, ...(B, 0) is exponentially
small and may therefore be neglected. For N < 1, we
shall see that the situation is just the reverse; (5.26)-
(5.27) represent the analytic continuation of the
results for that case.

Finally, let us remark that the damping factor for
the least strongly damped terms in (5.22) is propor-
tional to [cf. Eq. (3.29)]:

exp (—Im 2,45 ) ~ exp [—(/3/2)x.(0 — 0)/7],

so that the residue series is rapidly convergent for
0—0,>y.

C. Behavior for N > 1 in the Lit Region
6:-0>»7)

In this region, we employ the representation (5.11),
where the integral is to be evaluated by the saddle-
point method. For this purpose, the path of integra-
tion is first deformed from (—oco0 + ie, c© — ie)
into a new path T’ from —poo to pco, symmetric
about the origin, one half of which is shown in Fig.
14(a). This brings it closer to the steepest descent
path, represented by the curve in broken line in Fig.
14(2), which will be discussed below. [The steepest
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descent path crosses the real axis between 4 = 0 and
A=f, at an angle of —=/4, as will be seen later.
It must curve away from the imaginary axis as
|| — oo, to get into the regions where the integrand
goes to zero [cf. Fig. 14, where an additional factor
€**® has to be introduced, corresponding to

012, (cos B)].

Its exact shape in the intermediate region is difficult to
determine and need not be considered here.]

In this process, we sweep across poles 4, and —4,,
with the lower and upper halves of the contour,
respectively, so that (5.11) becomes

Ji(B:0) = fr.o(B, 0) + Frres(B, 0) + Fires(B5 6), (5.28)

where

ol ) = — - f UG, HOP4(cos )4 dA, (5.29)
pgJr

fi,res(ﬂ’ 0) = - Z‘ETL i (—l)m z residue
m=0 n

x {AUP,_j(cos B)exp [2i(m + 1)=A]}, ,

(5.30)
fi,l‘eﬂ(ﬁ’ 0)
= - 2;"2 (=)™ residue

x {AUP,_j(cos 0) exp [2i(m + 1)mA]}_,

+ -zﬁﬂ i‘ residue {AUP,_y(cos 0) tan (#2)}_, .,
n=1
(5.31)

where the last term in (5.31) is the sum of the contri-
butions from the 2n, poles swept by the upper and
lower halves of the contour together, and we have
made use of (5.12).

The residue series (5.30) differs from (5.7) only by
the substitution

iP,_y(—cos 8) — ¢""2P,_y(cos 6).
Accordingly, (5.20) is replaced by

ﬂ.res(ﬂ’ 0)
278 —9_1} ) 2 m g
~ (sin 6) exp QiMB) 3 (—D" 3 (@3)

x exp {ilJ@2m + 2)7 — 6,]}
x {[2m + 2y7r — 6,)J4(4,0) + i6J,(2,0)},
6,—0>y, 6>0. (532
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In particular, for 6 3> g2, this becomes

Frres(B5 0)

ir/3 3
~ = ( y 0) exp (2iMp) .

M \msin
X 3 (=" 3 @) " oxP (Al — i/4)

+ LLm €xp (iAnLy  + i(7/4)],
6,— 0>y, 6> (533

This differs from (5.22) only by the omission of the
series in {},, which would not converge rapidly in
this region. Physically, this omission corresponds to
the fact that, in order to reach a direction 8 in the lit
region, a surface wave excited at T, (Fig. 15) must
describe an angle {f, = 2= — {}, rather than {f,.

In the last residue series of (5.31), we can apply the
approximation

tan (wd) ~ i,

valid in the neighborhood of the poles —4,,. We then
find

fi,res(ﬂ’ 0)

x exp @MY 3 (~1)" 3 (@)

X exp [—iA,(2mm — 2i cosh™ N)]
x [2ma — 2i cosh™ N)Jy(4,0) — i0J,(1,6)]

43 (@) exp (—24, cosh™ N)

n=1
x [2 cosh™ NJ(A.0) + 6J,(A.0)],
b,— 6>y, 62>0, (534

which is again negligible as compared with 7, ..(8, 6)
[cf. Eq. (5.27)].

Finally, let us evaluate f; (B, 0). The integral (5.29)
has a saddle point on the real axis, between 4 = 0 and
A = f, so that we may employ asymptotic expansions
for the integrand similar to those employed in connec-
tion with (4.31). With the change of variables

A= fBsinw, = asinw,, (5.35)
we find
, 28\
oy 6) = —2671N (——) f B(w,, B, 6)
’ 7 sin 0
X exp [ifo(wy, D] dw,, (5.36)
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where
o(w;, 0) = 2[N cos wy, — cOs W,
+ (wy — wy; + 0/2) sinw,], (5.37)
B(Wl ’ /3’ 0)
_ (sin wy)? cos? w, cos w,
(N cos wy + cos w,)?
x {1 + —‘[ L (14 3tantw)
pl4dcosw,
1 5, 2 tan® w,
— ———— (1 4+ 3 tan® wy) —
4N cos w, ( i 2 cos®w,
X (N cos w, — cos w;) — cc.>t b :I + O(ﬁ‘z)},
8sinw,
(5.38)

and the path of integration is the image of I' [Fig.
14(a)] in the w; plane.
Taking into account the relation

dw,/dw; = cos w;[(N cos wy), (5.39)

we find from (5.37) that the location of the saddle
point is determined by

Wy =0,, W, =0,, (5.40)
where

6, — 0, =06/2, sinf, = Nsinb,. (541)

The corresponding saddle point in the 4 plane is

7 = kp = Bsin 0y, (5.42)

where p is the impact parameter of the incident ray
AB (Fig. 16) which, after two refractions (angles
6,, 6;) and no reflection, emerges in the direction 6,
according to the laws of geometrical optics.

It is possible to solve (5.41) to express sin 8,
directly in terms of 0:

sin 0; = (N/7) sin (6/2),

(5.43)

Fi1G. 16. Physical interpretation of the saddle point (5.42). BCP is
the directly transmitted ray corresponding to the incident ray AB ac-
cording to geometrical optics. The impact parameter associated with

this ray is OF = p = 1/k = a sin §,, where @ =2(0, — 8,)(N > 1).
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where
7= (1 —2Ncos (0/2) + Nt (5.44)

The steepest descent path crosses the real w, axis at
an angle of —#/4. The corresponding path in the 4
plane is represented by the curve in broken line in
Fig. 14(a).

The saddle-point evaluation of (5.36) can now
proceed by applying (4.34). A straightforward but
rather lengthy calculation finally leads to the result

sin 0,\F (2N cos 6, cos 0,)%

ol 0 = =3 ) ( e

sinf / (cos O, + N cos 0,)

% SXP [2if(N cos 0, — 08 )}
(N cos 0, — cos 6,)*

iF(0) 2
x|l ——2 4o ,
{ 168 cos 6, + 00 )}
6, — 6>y, (545
where
F(0) = 2 cot Bl[cot g — <O 2 :| _ 2
0—p) 1-—yg
+ 157 — 6 + (x — 1)(8x* + 5¢ + 8) tan® 0,
(5.46)
and [cf. Eq. (5.39)]:
z = cos 0,/(N cos 0,). (547

Let us now discuss the domain of validity of (5.45).
It must clearly fail near the shadow boundary,
6 — 6,, because the Debye asymptotic expansions for
H{1?(B) employed in (5.36)-(5.38) are then no longer
valid. We must have 8 — 1> 8%, According to (5.41),
this implies 6, — 6 3> y, which is the condition given
in (5.45). The same condition is found from the
requirement that the first correction term 5 (6)/8 cos 6,
in (5.45) must remain small as 6, approaches /2.

At the other extreme, near 6 = 0, the derivation of
(5.45) is again unjustified, because the asymptotic
expansion N, Eq. (C7), for fo_’%(cos 0) in (5.29) is no
longer valid. However, it is found that (5.45) ap-
proaches a finite limit as 6 — 0, namely,

2N? .
f1.4(8,0) = — T exp [2i(N — 1]

o
(5.48)

The proper way to evaluate f, (8, 6) near 6 = Ois to
apply the transformation (5.13) to (5.29), to substitute
P, 4(cos 6) by N, Eq. (C9), expanding the integrand
around 4 = 0, from where the dominant contribution
arises, and to employ the techniques developed in N
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(Sec. IX.C and Appendix F). The result for 6 = 0is
identical to (5.48), showing that (5.45) is, in fact,
uniformly valid down to 6 = 0 [a similar situation
was found for (4.35)].

The result (5.45) depends implicitly on 6 through
(5.41). The dependence can be made explicit with the
help of (5.43). The final result is

f1.4(B, 0)
2N?
(N — 1)
« [(N cos (6/2) — 1X(N — cos (0/2))]% exp 2irf)
(cos (6/2)) 7
» {] _ iT [Z(N cos (0/2) — 1)
165(N cos (0/2) — 1) N sin (6/2)
(N cos (0/2) — 1)(N — cos (6/2))
27% sin (0/2) )

X (cote —

9
——— 4+ 15y —6+8x—1
-z
; N2 sin® (6/2)
X+ By + 1 ]+o —2},
(" + 3 )(N cos (62) — 1) (67
0,— 0>y, 620, (549)
where 7 is given by (5.44) and [cf. Eq. (5.47)]
_ Ncos(6/2) -1
N(N — cos (6/2))
The dominant term, represented by the factor
outside of the curly brackets, agrees with the result
found by Rubinow [Ref. 12, Eq. (53)]. As observed

by Rubinow, the corresponding contribution to the
differential scattering cross section,

(@)1 = & If,.,(8, O

dQ
_ 4a®N*
" cos (6/2)(N® — 1)*
N [(N cos(6/2) — 1)(N — cos (8/2)F
(N* —2Ncos(6/2) + 1)®
differs from the prediction of classical mechanics for
square-well scattering only by a factor

t = (Tme)2

(5.50)

, (8.5

_ I: 2 cos 0, 2N cos 0, :r
~ L(cos 6, + N cos 0,) (cos 0, + N cos 6)
16N?
= (—1‘72——1)_4 [(N cos (6/2) — 1N — cos (6/2)T%,
(5.52)

which represents the transmissivity of the well (T
and T, are given by the well-known Fresnel formulas).
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However, it must be kept in mind that this is by no
means the only quantum effect: there are other contri-
butions to the differential cross section from the
remaining terms of the Debye expansion (in particular,
from the forward diffraction peak in f;), as well as
interference terms.

D. Behavior for N > 1 in the Penumbra Region
(lB - 0t| < 7")

Let us now go over to the transition region (ii)
of (5.3), |0 — 0,] < y (penumbra). In this region, as
was mentioned following (5.47), the above evaluation
of f, (B, 6) breaks down, because the Debye expan-
sions for H{?'(8) employed in (5.36)—(5.38) are no
longer valid. With this single exception, all the results
derived in Sec. 5C remain valid in the present region,
so that we only need to consider f, _ .

Since the dominant contribution to (5.29) in the
penumbra region arises from the domain [A] — § =
O(BY), the appropriate expansions for H¥(f) in
(3.24), as well as for [1 8] and [2 §] in Ty Ty,, are
those given in Appendix A and already employed in
Sec. 4D. We shall keep only the dominant term in each
expansion. For H{®(B)/H(B), the result is given by
(4.54); for T,,, by (3.5) and (4.58), and we find

Ty & 2. (5.53)
Finally, we get
5i1r/12,y
, D — —m————
$ro(F> 0) 7BM(2 sin 6)F
X f exp Ri((° — )% Acos™ (Ala)) + iA6] \1/4/1(‘2)/1
(5.54)

where { and A({) are given by (4.55) and (4.56),
respectively. The path of integration in the { plane is
chosen to be the same as in (4.65)-(4.66), so that the
dominant contribution arises from |{| < 1. Accord-
ingly, the integrand may be expanded around 1 = §.
This leads to the final expression

ir/d » .
) a —p & exp [2IMB + if(0 — 6))]
fl,g(ﬁ’ ) M (277/3 Sin 6)% f(s)s
16 —6,l< 7y, (5.55)
where
s=0—6) (5.56)
and
exp (ist) |
= 5.57
£ f A (5.57)

is the Fock function already defined in N [Eq. (8.23)].
The path I' runs from e2*/3c0 to 0 and from 0 to oo
(cf. N, Fig. 10).
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Thus, we find a normal (Fock-type) transition from
light to shadow, described by f(s). In the shadow
region, s 3 1, (5.55) becomes, according to N [Eq.
(8.24)],

fr.4(B, 0)

A —

1712 y %
2iM
M (wsin@)exp( iMP)

X 3 (a;)7(6 — 0 exp [i(B + €"°x,[y)0 — 6,)],

6—06,>y, (558)
which, according to (3.29) and (5.23), corresponds
to the residue series in f, in (5.22) as it should
[see the remarks following (5.33)].

On the other hand, for s < 0, |s| > 1, the Fock
function (5.57) can be evaluated by the saddle-point
method, with the following result:

Flo) ~ 7 e s Fexp [—(i/12)5%,

s<0, 5|1 (5.59)
Substituting this in (5.55), we find, in the lit region,
fr.4(8,0)
_ (6, — 0}
M(sin 6)
x exp {2iMB — iB[(h, — 6) — #4(6, — O)°]},

0, — 0> y. (5.60)
Again, this agrees with the dominant term of (5.49),
provided that, as in previous cases, we do not try to
push the Fock-function representation too far into the
lit region: its domain of validity is just sufficient to
produce a smooth transition.
Finally, since f(0) = 1[cf. N, Eq. (8.26)], we find,
at the shadow boundary,

zrr/4N
1,4\Ps 0) ~ — ¢ 3
b8~ = S

This completes the evaluation of the second term
of the Debye expansion for N > 1.

exp (2iMp). (5.61)

E. Behavior for N < 1

For N < 1, according to Fig. 13(b), we again have
to consider three regions: shadow, penumbra, and lit
region, defined precisely as in (5.3) [however, 6, is
now given by (4.76)!]. We shall see that the width of
the penumbra region is given by

Ab ~ y" = (2]}t = p|N3. (5.62)

Let us consider first the shadow region, 0 — 6,
y'. The amplitude is again a pure residue series, given
by (5.6)~(5.8), and the evaluation of the residues again
proceeds according to (5.17)-(5.19). For f] (8, 6),
the main difference with respect to (5.26) is that
H?(B) is now given by N, Eq. (A16). Accordingly,
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the result differs from (5.26) only by the substitutions
[cf. Egs. (4.46) and (4.81)]:
M— —iM’, cosh™? N— —icos ! N = —if,/2.

Thus, we find (5.63)

Ji.res(B, 0)

2 — o
A 2e""/“;1,—\]1‘7(7;n 66) exp (—2iM'B)

x 3 (=" 3 (@) exp (=ik1(2m + D7 — 0]}

x {[2m + D — 6,1Jo[A(7 — 6)]
— i(m — O)J, (7 — 0)], 0 — 0,7,

0 < 7.

(5.64)
[The evaluation of the dominant term in the residue-
series contribution at the poles 4, for an arbitrary
term of the Debye expansion will be carried out in
Paper 11 (Appendix D).]

In particular, for = — 6 3 o™, we find [cf. Eq.
(5.27)]

Sire Bs 0) ;
e——‘iﬂ/lZN2 yr
~ —2iM’
M (71' sin e) exp (—2iM'P)

x (S @ g ewp (=80 + 5, (- S (@
X [61.m €XD (—iM L5 ) = il €XP (—u;z;,mn},

6—6,>y, m—0>a . (565
By comparing this result with (4.82), we see that it
can be rewritten as follows:

e N2 [ 2m
[ ves(Bs 6) A 26774 22
Pl 0 2070 S0 ( ST

x {z D, Lo exp (— i Lo

3
) exp (—2iM’f)

+ 3 (=) 3 (Dl 5P (— iyl
~ 1D, e (~ 1L,

0—0,»y, 7—0>»a, (5.66)

D, = e B3 2maly’. (5.67)
Each term in (5.66) differs from the corresponding
term in (4.82) only by a factor

;lym:l:
D LEn =D, f dg.

This result can be physically interpreted as follows
[Figs. 11(a) and 17]. The diffracted rays shown in Fig.
11(a) travel along the inner side of the surface, so that
they cannot make any “shortcuts” such as those
found for N > 1 (Fig. 15). Their only possible
interaction with the surface is to produce a ray in the
exterior region leaving the surface at the critical angle,

where

(5.68)
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Fic. 17. Physical interpretation of the diffracted rays in (5.66);
$,S1S7Uj is a typical diffracted ray of this class.

such as S;U, in Figs. 11(a) and 17. Each time a
surface wave associated with the first term of the
Debye expansion does this, it excites further surface
waves by a kind of “internal diffraction,” and these
are precisely the contributions found in (5.66). They
have had one additional interaction with the surface
as compared with (4.82), in agreement with the general
physical interpretation of the Debye expansion given
in Sec. 3A. We see that D, represents the internal
diffraction coefficient.

A typical diffracted ray of this class is S,8;S/U;
in Fig. 17. The angle ¢ described by the “parent”
surface wave up to the point of excitation S; can take
any value between 0 and {Z,, , so that we again have an
infinity of possible paths and must sum all their
contributions. This leads to the integral in (5.68)
[cf. the similar discussion for (5.24)].

To obtain the contribution from the residue series
at the poles 4,, it suffices to analytically continue
(5.22) to N < 1, by making the substitutions

M — —iM’, cos! L icoshtl. (5.69)
N N
This leads to
fl.res(ﬁ’ 6)
&7/ y %
- exp M’
M (7r sin 6) p@M'A)

x (2 ()"0 + 2i cosh™ (1/N))
x exp [i1,(8 + 2i cosh™ (1/N))]
+ il(—1)m » (a’n)‘z{(2m'n + 6 + 2i cosh™! (1/N))

x exp [i1,2mm + 6 + 2i cosh™ (1/N))]
+ i@mm — 6 + 2i cosh™ (1/N))
% exp [id,Q2mm — 0 + 2i cosh™ (1 /N))]}),

6—6'>y, 7m—0>a (570)
These terms play the same role here that (5.27)
played for N > 1. We can regard them as arising from



SCATTERING BY A TRANSPARENT SPHERE. I

refraction of the surface waves excited by the tangen-
tially incident rays (Fig. 9), which, as we have seen in
Sec. 4E, are still given by (4.41) for N < 1. However,
this is refraction with grazing angle of incidence, i.e.,
well beyond the critical angle, so that the correspond-
ing angle of refraction is complex, corresponding to
evanescent waves in the optically rare medium, as in
total reflection. This gives rise to strong damping and
makes (5.70) exponentially small, and therefore
negligible, in comparison with (5.65), which, con-
sequently, describes the total amplitude in the shadow
region.

Thus, for the second term of the Debye expansion,
the poles 4, and 1, interchange their roles as we go
over from N > 1to N<1.For N> 1 (N <1), the
contribution from the poles 4,(4,) is dominant, and
that from the other set of poles is exponentially small
in comparison, although both contributions can be
analytically continued in N from one case to the other.
The two sets of poles play complementary roles, and
A, is just as important for N < 1 as 4, is for N > 1.

Let us consider next the lit region, 6, — 6 3> y". In
this region, we must employ the representation
(5.15)—(5.16) instead of (5.11)-(5.13). In order to
apply the saddle-point method, the path of integration
in (5.15) is first deformed into the path I' shown in
Fig. 14(b). In this process, it sweeps across poles 4,
and —A, (say 2n, of them), so that we get [cf. Eq.
(5.28)]

fl(ﬂ’ 6) =f1.ﬂ(ﬂ! 0) +f;.res(ﬂ, 6) + l res(ﬂ 6) (5 71)
with

f1..8,0) = — 3 f U4, B)Q%4(cos 6)A d2, (5.72)
f;.res(ﬁs 0)

2

= f {_i 20: residue [AUP,_y(cos 6) tan (7A)],,

+ z ( l)m z residue [}“UPA—Q(COS G)ezl(m+1)1r).] }

m=0

(5.73)
fi, res(ﬁ 6)
= -ﬂ— 2 (-n™ 2 residue
x {AUP,_y(cos 0) exp [2i(m + D)mA]}_; .. (5.74)

We now find

fi.l‘ﬁﬂ(ﬁ’ 0)

f&a2e"”"’——-—N2 ( o
y' M’ \sin 0

xéo(—l)m 5;‘ (aly2exp {—iA,[2(m + )7 — 0,1}

x {i[2(m + )7 — 6,)J4(4,0) + 0J,(2,.6)},
0, — 0>y, 620 (575

i
) exp (—2iM'f)
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In particular, for 8 3> «7,

—im /12772 '
, e N
Fiovesls ) ~ ( Y

3

—2iM’
Y7 " 0) exp (—2iM’'f)
X 3 (=" 3 @) im

— iy exp (—id LT )],
0, — 0>y, 0o, (5.76)
which differs from (5.65) only by the omission of the
series in {},, as it should [see the comments following

(5.33)].
On the other hand,

FrreB5 0)

26712 [ @ '
¢ exp M’
A ( o 0) xp (2M' )

exp (—id, it )

x { gl(a;ﬁ exp (=24, cosh™ (1/N))

X [2 cosh™ (1/N)Jo(A,0) + 07(2,)]

+3 D" S (@

x exp (QimmA, — 22, cosh™ (1/N))

x [Qimm — 2 cosh™ (1/N))Jo(4,6) — BJI(ZnB)]},

6,—-0>»9', 620, (5.77)
which is negligible in comparison with /{ ..(8, 0).

Finally, let us consider the ‘“‘geometrical-optic™
contribution f; (8, 0), given by (5.72). This differs
from (5.29) by having Q¢", instead of Q{*); and by the
different path of integration. With the same change of
variables (5.35), the saddle point is found to be
determined by [cf. Eqs. (5.40) and (5.41)]:

Wy =0, Wy =0,, (5.78)
where 0
0, — 0, = 5 sinf, = Nsinf,. (5.79)
This agrees with the laws of geometrical optics for
N<1 (6, <9,), and it is the reason why it was
necessary to employ the representation (3.15) instead
of (5.11).

The steepest descent path now crosses the real axis
at an angle of =/4 [Fig. 14(b)]. Thus, we have to
employ N, Eq. (6.12), rather than N, Eq. (6.21).
Making appropriate changes in the calculation that
led to (5.45), we finally obtain

sin 0;\F (2N cos 6, cos 6,)8
180 = (55) :
sin 0 ) (cos 8, + N cos 0,)
% &P [—2if(cos 6; — N cos 6,)]
(cos 6, — N cos 02)’}

iF(6) _2
x {1 R Trrrr ):, (5.80)
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where
cot 8,

(x—=1D
and y is still given by (5.47).

F(6) = 2 cot 91[2

H. M. NUSSENZVEIG

9
— cot e] + vy + 155 — 6+ 8(x — () + 87 + D tan®6,,  (5.81)

With the help of (5.43), this result can also be expressed directly in terms of the angle 6. We find

2N?  [(1 — N cos (8/2))(cos (8/2) — N)1% exp (—2irf)
fl.g(ﬁ’ 0) = 0 3 2
(1 — N9 (cos (6/2)) T
(1 _ ir f2(1 — N cos (6/2))r(1 — N cos (6/2))(cos (6/2) — N) — cot
164(1 — N cos (6/2)) N sin (6/2) [ 27 sin (6/2) c ]

9
+oT =648 — DG+ 8+ D)

x—

where 7 and y are again given by (5.44) and (5.50),
respectively. The result is also uniformly valid down
to 6 = 0. It differs from (5.49) only by the over-all
sign factor and by the replacement r — —=. This
gives the correct continuation for N < 1, as can be
verified by checking that, for 6 =0, Eq. (5.82)
becomes identical to (5.48).

The last region that remains to be considered is the
penumbra region, |0 — 6,] < »'. In this region, we
must employ the expansions of Appendix A for
H{? (o). By a procedure entirely similar to that which
led to (5.55), we find

A~ —i1r/4_1\1%
fuslf 6) ~ 2672
exp [—2iM'B — INB(B — 6)] ,
X (27 sin 6)} 7
10 — 0, < v, (5.83)
Vhere @O —0) = O — )y (5.84)
and e~ "% [ exp (—isl)
(s) = - de, 5.85
foy =5 ff L 68)

where A({) is defined by (4.56) and the path [’

consists of a straight line from e="200 to 0 and the

real axis from 0 to co. By comparing (5.85) with
(5.57), we find that they are complex conjugate:

76 = (5.86)

The behavior of f(s) for |s| > 1 therefore follows

immediately from the corresponding behavior of f(s).
In this way, we also find that (5.83) gives rise to a

N2 sin® (6/2)
(1 — N cos (62))°

} + O(ﬁ"“)),
6, — 6>y, 6>0, (582

smooth transition between shadow and lit region.
Note that it is a normal (Fock-type) transition,
similar to that found for N > 1. This behavior differs
from that found in the same region for the first term
of the Debye expansion [cf. Eq. (4.101)]. As has
already been mentioned, all terms in the Debye
expansion give rise to the same transition region for
N < 1, so that the behavior of the complete amplitude
within this region is quite complicated.

This concludes the discussion of the behavior of the
second term in the Debye expansion. We see that the
modified Watson transformation indeed enables us to
determine the high-frequency behavior of the first
two terms in any direction 6, both for ¥ > 1 and
for N < 1. The behavior of the remaining terms will
be discussed in Paper II.
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APPENDIX A: ASYMPTOTIC EXPANSIONS FOR THE POLES AND AUXILIARY FORMULAS
FOR THE COMPUTATION OF RESIDUES

The following asymptotic expansions for H¥(x), H;*(x), valid when |4 — x| = O(x}), x > 1, have been

derived by Schobet!:
o

) 2n/3 .
HE =207 (2) 317 (2) 7 P®) AL (=) — 7 0.(8) AT (-8,

=0

X 5‘ -9 2n/3 .
H®(x) = —2e-”’3(3) Z(—1>"(3) [P.(&) Ai (=8 — B0 ,(&) AT (—8),
X/ n=0 X

41 W. Schobe, Acta Math. 92, 265 (1954).

(A1)

(A2)
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where
N
£ = gt (—) @ — x), (A3
X
and
PO(E) = 19 Qo(é) = 0’
— z‘fr/3_5_ — —-i7r/3£2__
PI(E) =e€ 15 S Ql.(g) - e 60 b (A4)
i & 13&° £ 1
— in/3 s s s I
Py =e (7200 1260)’ (5 = a0 T a0
Py(&) =0, 0o(&) =1,
P& =— £ 0,(&) = —e"? < (AS5)
AT 60 107 ! 15’
& 3 - i £ 19&2
_ 11r/3 > — irf8f_5 —Z> ).
PaH = (3360 + ) Qi) = e (7200 + 2520)

The corresponding expansions for H®' (x), H;{?(x) are obtained by changing the sign of i everywhere in the

above expressions.
By employing a slightly different version of these results, Streifer and Kodis?® found the following improved

asymptotic expansion for the poles (3.29):

Ay =B+ €738, [y, (A6)
where ¥ < 1 [cf. Eq. (2.49)] is the expansion parameter, and
'Sn =X, — 51” (A7)

with x,, defined by (2.54) [nth zero of Ai (—x)], and

5 = _ein/afz 2 e_i"/s( x5 1 ) 1 ( 281x5 29x, ) 6

" 60 1400~ 140)7 T \4536000 ~ 12600

. . 1 . 2
+ ezﬂ/ﬁ%lﬁl + e'ur/3 {ﬁ(l + A_/I_z)yZ _ e—27/3&1

6 20

313 1y, etk 1 2 .
% (g + 55— 157 — G 2o 7+ 1) + 000 A8
(2M4 om® 18)7 T M 36\wmt @) (A8)

where M = (N2 — 1)}, asin (2.53). The corresponding result for N < 1 (which was actually the case considered
in Ref. 28) is obtained by the substitution (3.30): M = —iM’' = —i(l — N2} Notice that 9, = O(y), so that
[0, K 1.

The first three terms of (A8), which do not depend on N, correspond to the Regge poles [N, Eq. (3.5)] for
an impenetrable sphere, i.c., the roots of H."(f) = 0. They can formally be obtained by letting N — ico,
corresponding to an infinitely high potential barrier. The remaining terms in (A8) represent the effect of a
finite refractive index.

For the evaluation of the residue series appearing in the first three terms of the Debye expansion, the values
of H{(8), H,'V(B) and their derivatives up to third order with respect to 4, taken at the poles 4, , are required.
The corresponding asymptotic expansions may be obtained from (A1)-(AS) with the help of the following
formulas, which follow from (A3):

é — e——iﬂ/Sy’ A = _e——i77/3yA1’ A/ _ e——i1r/3y§A, (A9)
where the dots denote partial derivatives with respect to A4 and we have introduced the abbreviations

A=Ai(=8, A =Ai'(=0, E=elyi—p). (A10)
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We then find the following results:

2 4 3 3
(1) = 2¢ —ir/3 {A wla (§_ AI - A) _7)_ -i:ri:![} (_5__ - ) 5 (é__ _ 1_3_) ] 6 }
H;7(B) + = 2 3 +20e 23 1)4" + 07 +0()}, (Al

1) am o o, Vo[ e g 3
R e XY

4
¢ a8 19 :
‘ ;’Oe'fs[%(%+7),4 5(5 +1) ]+o(y")}, A1

Hin(ﬂ) — 2eiﬂ/3y2{Ar _ _'}_"__2 117,/3[ SA + (53 )A:’

15 2
_r —wa[ 2(2_2. 53) ( ) ] 6}
150 ¢ & P + (=2 —5)4| 4905, (A13)

) — "3 2’_?*’#/3 _‘3&3 4 §f
HP(B) = —2y EA+30e 2+5A+ A

e (G- rov)

ry(1) — 3 f i:r/ﬂ[(éa_ ) :__2 2 }
HYPB) 2y{5A+30e S)a —- &4

2
2 e HCEE Y, (ifi - Bess)a]+oon) @i

180 7 0 14
2 3
9 = 2y4e’”/3{5A' — A %’aew/a[ng, + 5(% " 6)/1} + 0()}4)}’ (A16)
2 3
HYPB) = -2y4e"”’3{£A’ —A— -3”6 e"”’g[sgm’ - 5(14 - %) A] + c)(y‘)}, (A17)
2 3
HY ) = —2y5e*"/3{2A’ + 84 + %’(—) e"”’-“[f (—i— + 4) A =3+ 2)A] + O(y")}. (A18)

To evaluate these expressions at the pole 4,, it suffices to replace £ by &,, which is given by (A7)-(A8).
Since |6,| « 1, the Taylor expansion of the Airy functions around ¢ = x, may be employed, with the results

Ay = Ai(=6) = 0,01 = %208 + ot + LR ). (A19)
’ s ' Xn g2 3 4 Xn st Xn 55
A = Ai (-5,.)=a,,(1—Ean+§an+£aﬂ_%aﬂ+-~->, (A20)
where a), = Ai’' (—x,), as in (4.40), and we have employed the differential equation of the Airy functions,
Ai” (z) = z Ai (2). (A21)
The denominator that gives rise to the poles is [cf. Eq. (4.38)]:
d@, f) = [18] — N[2 «] (A22)

and the value of its partial derivatives with respect to 4, up to third order, at the poles 4, is also required for
the evaluation of residues.
In the neighborhood of the poles, we have, by N, Eq. (A16):

W - N

Rl == =)

+ 0", (A23)
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where

o = AB.
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(A24)

The partial derivatives of [2 «] with respect to 4 can be readily evaluated from this expression. Those of [1 f],
on the other hand, can be expressed in terms of (Al1)-(A18) by means of the following formulas:

: (1) _ L
[gr= H‘”( 5 {H;V(8) — [1 BIHP(B)], (A25)
[1p] = B — 1 AP} — 21O gy (A26)
Hmm) ' T HPE)
(1) ry(1)
1 H/(l) 1 H(l) -3 b B 1781 — 3 H3'(B) 1 , A27
[15] = ‘“(5){ (B) — [1 BIH;" (B} H(;,(ﬂ)[ Bl H?,(ﬁ)[ i3 (A27)
where, at the poles, [1 f] can be computed from (3.27) and (A23):
(18], = N[2«l,, . (A28)
APPENDIX B: ASYMPTOTIC BEHAVIOR OF and we define
THE SPHERICAL REFLECTION AND TRANS- 2
MISSION COEFFICIENTS m=ecln|=| 5, =cln —5 l (B2)
e

We collect in this appendix the main results required
in the text about the asymptotic behavior of S(4, f)
and of the spherical reflection and transmission
coefficients (3.4)-(3.8) as |A| — oo. The derivation is
omitted: it is based upon the formulas for the asymp-
totic behavior of cylindrical functions given in N
(Appendix A).

The results are presented graphically in Figs. 18-21.
The expression given in each region of the 4 plane
represents the asymptotic behavior of the corre-
sponding function in that region. Inessential factors,
such as constants, are omitted.

The notation is the same as in N (Appendix A):
when || — co along directions approaching the
positive or negative imaginary axis, we take, respec-
tively,

A= +o lMa

o = exp li(#/2 + ¢)], (B1)

EE— ep
A—‘d —r)\( )-»O
Rex—

/ . (%-
e J _O\zzzli(, n,)_'m \
o i |

K

/ \
N--3 L]

FiG. 18. Asymptotic behavior of 1 — S(4, B) as |A] — cc in different
regions of the 4 plane. X —poles (N > 1).

The asymptotic behavior of S(4, p) is given in Fig.
18, and that of all the spherical reflection and trans-
mission coefficients can be obtained from Figs. 19
and 20. Finally, Fig. 21 shows the asymptotic behavior
of p = RyHM(0)/H? (), the expansion parameter in
the Debye expansion [cf. Eq. (3.15)}.

All the results shown refer to the case N > 1.
However, it is not difficult to adapt them to the case
N<I

APPENDIX C: REDUCTION TO GENERALIZED
FOCK FUNCTIONS

To reduce the first two integrals in (4.64) to the
generalized Fock functions (4.67), we first note that,
by (4.63),

4

17a2 _7 17,2
(1 + 7)o = [+ :59),  (CD)
0 dl
% ‘1,*% ImX -3
K \ ;
| ] ‘
¥ /
ﬂ)\ze:n)* _*eznl\ 1“”;’;’,”1—4 ’,'
y
(%)n"o [N up) 0% ,‘l
\ ;
\\ \\\ ,’/ X
N Y ¢  Rel— 2
L e e e N R
«’/ \\ kY
y { \ .
B 2y h (N-1)pt \ 2%
ettt (%) -0 _.p_"ﬁf—_,g \ _,(;;)
‘ \‘\ -0 ‘5(
|
f | L
71:’*"1 'Ir'% Vl.—v;—‘

Fic. 19. Asymptotic behavior of Ty, (4, ) = | + Ry(4, B) as 14| —
oo in different regions of the 4 plane. X —poles (N > 1).
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F1G. 20. Asymptotic behavior of Ty,(4, B =14+ Ry p) as
|A] = <o in different regions of the A plane. X —poles (N > 1).

where, unless otherwise indicated, the argument of
the Bessel functions is always the same as in (4.63).
We then find, by partial integration,

0 )
s f (1 + Byo 5 d

21#/3'}"]1(59) + f a+ 1{7,) Ji dC (C2)

where the Wronskian relation (4.57) has been em-
ployed.

A similar transformation can be performed for the
second integral in (4.64), with the help of the Wron-
skian relation [N, Eq. (D2)]. Putting together the
results, we obtain

. _
e21‘ﬂ/3f (1 + %C'}’2)J0 le dC
[ Ai
+ s f a+ 30, 2 ag
(1]

- ng(ﬂG) + ’—; [Fo1(B: 0) + 37*F1.(B, ), (C3)

where F,, , is defined by (4.67).
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Similarly, by partial integration, we find

-117/6

fr— Jodt =2 Fo (B0, (C

It follows from the differential equation (A21) of the
Airy functions that

A? s & 1 d (A
S et ol B Cs
AT g3 d{(A3) )
Thus, by partial integration, we get
fA/2
= Fulf )+ e”"‘—— [Foo(B. ) = Fo(p. O))
(C6)
where we have employed the relation
J1=34Jo — Jo).
Finally, we have
L e gar = = [ 15, 0) = 6,0
(o))
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The treatment, initiated in Paper I [J. Math. Phys. 10, 82 (1969)}, of the high-frequency scattering of a
scalar plane wave by a transparent sphere is continued. The main results here are an improved theory of
the rainbow and a theory of the glory. The modified Watson transformation is applied to the third term
of the Debye expansion of the scattering amplitude in terms of multiple reflections. Only the range
1 < N < V2, where N is the refractive index, is considered. In the geometrical-optic approximation,
this term is associated with rays transmitted after one internal reflection, and there are three angular
regions, corresponding to one ray, two rays, or no ray (shadow) passing through each direction. Together
with transition regions, this leads to six different angular domains. In the l-ray and 2-ray regions,
geometrical-optic terms are dominant. Correction terms corresponding to the 2nd-order WKB
approximation are also evaluated. In the 0-ray region, the amplitude is dominated by complex rays and
surface waves. The 1-ray/2-ray transition is a Fock-type region. The rainbow appears in the 2-ray/0-ray
transition region. The extension of the method of steepest descents due to Chester, Friedman and Ursell
is applied. The result is a uniform asymptotic expansion for the scattering amplitude. It reduces to Airy’s
theory in the lowest-order approximation, but its domain of validity is considerably greater, both with
regard to size parameter and to angles. The glory is an example of strong “Regge-pole dominance” of
the near-backward scattering amplitude. Van de Hulst’s conjecture that surface waves are responsible for
the glory is confirmed. However, besides surface waves taking two shortcuts through the sphere, higher-
order terms in the Debye expansion must also be taken into account. By considering also the effect of
higher-order surface-wave contributions, all the features observed inthe glory (apart fromthepolarization)
are explained. Resonance effects associated with nearly-closed paths of diffracted rays lead to large, rapid,
quasiperiodic intensity fluctuations, The same effects are responsible for the ripple in the total cross-
section. Similar fluctuations appear in any direction, but their amplitude increases with the scattering
angle, becoming a maximum near the backward direction, where they are dominant. They can also be
interpreted as a collective effect due to many nearly-resonant partial waves in the edge domain. The
dominant surface-wave contributions can also be summed to all orders for N < 1, leading to a re-

JANUARY 1969

normalization of the propagation constants of surface waves.

1. INTRODUCTION

In Paper I of this work?! the high-frequency asymp-
totic behavior of the scattering amplitude for a scalar
plane wave incident on a transparent sphere was
investigated, with the help of techniques developed in
an earlier paper.? It was assumed that

BE»1, IN—1gE»1, (1.1)
where 8 = ka, k is the wavenumber, « is the radius of
the sphere, and N is the refractive index.

The Debye expansion of the scattering amplitude,
in terms of an infinite series of multiple internal
reflections, was employed. In Paper I, the first two
terms of this series, corresponding to direct reflection
from the surface and to direct transmission through
the sphere, were evaluated. Both N> 1 and N < 1
were treated.

1 H. M. Nussenzveig, J. Math. Phys. 10, 82 (1969) (preceding
paper; referred to as I).

2 H. M. Nussenzveig, Ann. Phys. (N.Y.) 34, 23 (1965) (referred to
as N).

In the present paper, the third term of the Debye
expansion is evaluated and the effect of higher-order
terms is discussed. In many cases of practical
importance, higher-order terms may be neglected,
although their contributions have to be taken into
account in the neighborhood of certain special
directions, as will be seen later. Any such contribution
may be evaluated, in principle, by methods similar to
those developed here.

In contrast with the first two terms, it is not possible
to give a uniform treatment of the third term, valid for
all N > 1. Asis shown in Sec. 2, there are five different
ranges of the refractive index, each of them requiring
a separate treatment. This subdivision arises already
at the level of geometrical optics. It is due to the fact
that, for different ranges of N, there are different
subdivisions into angular regions, each angular region
being characterized by the number of rays going
through a given direction within that region. This
number may vary between zero and three.

Here we shall be concerned mostly with the range

1< N<+2, (1.2)
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because we have in mind the application to light
scattering by water droplets, and the refractive index
of water, N = 1.33, falls within this range. Although
several interesting phenomena occur in other ranges,
especially near the transition points, our attention in
the present work is focused mainly on the range (1.2).
In this range, according to geometrical optics, there
are three different angular regions: a 0-ray (shadow)
region near the forward direction, a 1-ray region near
the backward direction, and a 2-ray region in between.
Taking into account, also, the corresponding transi-
tion regions, we find a total of six different angular
regions to be considered.

The structure of the third term differs from that
of the previous ones in many respects. Physically, this
difference is due to the fact that it contains two new
features, associated with two very beautiful natural
phenomena: the rainbow and the glory. They are
contained, respectively, in the 2-ray/O-ray transi-
tion region and in the region near the backward
direction.

The remaining four regions, which we call “normal,”
are discussed first (Sec. 3). In the l-ray region, in
addition to the geometrical-optic contribution, we
find surface waves, excited at the 1-ray/2-ray shadow
boundary, corresponding to diffracted rays that take
two “‘shortcuts” across the sphere. The l-ray/2-ray
transition region corresponds to a normal (Fock-
type) transition. In the 2-ray region, there are two
real saddle points, corresponding to the two rays
passing through each direction within this region.
These saddle points become complex in the shadow
(0-ray) region, and, due to their presence, the ampli-
tude cannot be reduced to a pure residue series in this
region.

The rainbow (Sec. 4) corresponds to a new type of
light-shadow transition, associated with the confluence
of a pair of geometrical rays (real saddle points) and
their transformation into complex rays (saddle points).
The corresponding mathematical problem is the
asymptotic expansion of an integral having two saddle
points that move towards (or away from) each other.
This problem has only recently been solved by Chester,
Friedman, and Ursell.®# By applying their method, we
find a uniform asymptotic expansion of the amplitude,
valid throughout the rainbow region and matching
smoothly with the results in neighboring regions.
Airy’s classical theory of the rainbow,® the best
approximate treatment known so far, corresponds to

3 C. Chester, B. Friedman, and F. Ursell, Proc. Cambridge Phil.
Soc. 53, 599 (1957).

4 F. Ursell, Proc. Cambridge Phil. Soc. 61, 113 (1965).

5 G. B. Airy, Trans. Cambridge Phil. Soc. 6, 379 (1938).
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the lowest-order approximation in this expansion.
The assumptions upon which Airy’s theory is based,
are known to have only a very limited range of applica-
bility; the present theory is valid over a considerably
extended range.

The glory corresponds to a strong enhancement in
near-backward scattering. A more complete descrip-
tion of this effect and of some of the attempts to
explain it is given in Sec. 5. The order of magnitude
of the intensity predicted by geometrical optics is far
too small to account for the effect. It-'was conjectured
by Van de Hulst (Ref. 6; Ref. 7, p. 373) that the glory
is due to surface waves of the kind discussed in Sec.
3, that make two shortcuts across the sphere. How-
ever, no quantitative treatment of the problem has
been given. The modified Watson transformation
enables us to treat the neighborhood of the backward
direction and to evaluate the residue-series contri-
butions. As is shown in Sec. 5, they are indeed of the
right order of magnitude to account for the enhance-
ment in the backward intensity. Physically, this arises
from the focusing of the diffracted rays on the axis,
which compensates for the exponential damping
along- the sphere surface. This confirms the basic
correctness of Van de Hulst’s conjecture. It also
provides an impressive example of ‘“‘Regge-pole
dominance” of the scattering amplitude.

However, as is seen in Sec. 5, the residue-series
contribution to the third term of the Debye expansion
is unable to account for the detailed behavior of the
backward-scattered intensity as a function of §. This
behavior has recently been studied by Bryant and
Cox,® by numerical summation of the partial-wave
series. They found a very complicated fine structure,
showing a quasiperiodic pattern with very prominent
and irregular peaks. This behavior must be due to
contributions from higher-order terms in the Debye
expansion.

The effects produced by higher-order terms are
investigated in Sec. 6, which deals almost entirely with
the particular cases of forward and backward scat-
tering. The geometrical-optic contribution to all orders
is evaluated in these cases and it turns out to be quite
small, as expected. The dominant term of the residue-
series contribution for an arbitrary order in the Debye
expansion is also evaluated. For N > 1, the result
agrees with that obtained by Chen® from the geometri-
cal theory of diffraction, in the case of a circular

% H. C. Van de Hulst, J. Opt. Soc. Am. 37, 16 (1947).

7 H. C. Van de Hulst, Light Scattering by Small Particles (John
Wiley & Sons, New York, 1957). :

8 H. C. Bryant and A. J. Cox, J. Opt. Soc. Am. 56, 1529 (1966).

? Y. M. Chen, J. Math. Phys. 5, 820 (1964).
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cylinder. For N < 1, it agrees with the physical inter-
pretation given in Paper I, in terms of internal
diffraction of surface waves excited by the critically
incident rays. As was found in Paper I, the sense of
propagation of these surface waves disagrees with the
prediction of the geometrical theory of diffraction.

The rate of convergence of the Debye expansion for
the residue-series contributions is also discussed in
Sec. 6. It is found that they converge much more
slowly than “geometrical-optic” contributions. How-
ever, for N < 1, when all terms have a common
shadow boundary, the dominant terms can be summed
to all orders, giving rise to a “‘renormalization” effect
of the phase velocities and damping constants of
surface waves. For N > 1, the summation to all orders
is more difficult, due to the different shadow bound-
aries appearing in all terms. Nevertheless, with certain
simplifying assumptions, the summation can still be
performed, allowing us to estimate the resultant effect
of all surface-wave contributions. It is found that the
higher-order contributions account for the quasi-
periodic fine structure found by Bryant and Cox,
giving rise also to resonance effects. The main features
observed in the glory, apart from polarization, are
thereby explained.

Furthermore, the same effects are shown to be
responsible also for the “ripple” in the total cross
section for N > 1 (Ref. 7, p. 177). This also agrees
with the explanation suggested by Van de Hulst. It
is pointed out that the ripple is a very general phenom-
enon, affecting the intensity in any direction, but
with variable amplitude, attaining its maximum at
180°. The corresponding fluctuations in other direc-
tions have been observed in numerical calculations by
Penndorf.1?

The conclusions pertaining to both Papers I and
II are summed up in Sec. 7, where possible extensions
and applications to nuclear physics are also discussed.

The treatment in Papers I and II deals only with a
scalar field and, therefore, cannot be directly applied
to light scattering. However, the whole treatment can
be extended to electromagnetic scattering. The ex-
tension will be given in a subsequent paper.!!

2. THE THIRD TERM OF THE DEBYE
EXPANSION

A. Preliminary Considerations

The notation employed is everywhere the same as in
Paper I, to which we refer for the definitions of all
symbols that appear in the analysis.

10 R, B. Penndorf, J. Opt. Soc. Am. 52, 402 (1962).
11 H. M. Nussenzveig, to be published.

127

The third term of the Debye expansion is given by
[cf. Paper I, (3.23)]

B =~ 3 -0

x f " o, UL )P;_y(cos 6)
x exp Qimmd)idi, (2.1)

where p and U are defined in Paper I, Eqs. (3.15) and
(3.24), respectively. Changing 1 to —A in the sum
from m = — o0 to 0, and noting that

p(—4, B) = &"*p(%, f), U(—4,B) = U4 B),

we can rewrite (2.1) as

(2.2)

70,0 =2 3 =0 [ 3. HUG, P e03 0
2.3)

With the help of Paper I, (2.12), this can also be re-
written as

x exp [2i(m + 1)mi]A dA.

i e 2 Adi
,0) = — UP,_j(cos B)e™ ——=—
S8, 0) Y, L PUE 3(cos 0) cos (1)
T - AdA
= - — UP,_i(cos )™ ————
28 —oo—iep s-i(cos e cos (m4)
€>0, (2.4)

where the path of integration in the first integral has
been shifted above the real axis. The last equality
follows from the fact that the integrand is odd [cf.

(2.2)].
It follows from N, (C3)-(C6), that

P,_y(cos 0) = e "[iP,_4(—cos 8)
+ 2 cos (mA)Q3(cos 0)]. (2.5)
Substituting this identity in (2.4), we find

fz(ﬂ’ 6) =f;,o +f2,r=f2_.0"f2.r’ (2.6)

where
* o Fi€
sEe 0 = [ pUOeos 014k 2D

and

1 oc+i€ AdA
L 6) = — — UP, y(—cos 8
fa.(B, 0) 28 _wﬂ.ep 24 )cos (74)
0—i€ }. d).
—_ UP,_3(—cos @
26 )i VAT O
w+i€
_ 1 pUe%”l—‘L‘&,‘ . (2.8
2ﬁ —a0t-1i€ COosS (WA)
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In (2.7), the path of integration was made to cross
the positive real axis (which is free of singularities) so
that it becomes symmetric about the origin. The
equality between the second and third integrals in (2.8)
follows from the change of variable 2 — — 4, with the
help of (2.2). The equality between the first and third
integrals follows from the identity

e2i7rl _ inh 1
cos (mA) cos (wd)’

(2.9)

where the first term gives no contribution because the
corresponding path of integration can be shifted to the
real axis and the integrand is odd.

Substituting in (2.7) the identity [N, (C2), (C5)]

0 4(cos 0) = e**Q M (cos 0) — ie'™*P,_3(—cos 0),
3 3 ¥
(2.10)

we find once more that the second term leads to an
odd integrand, so that

s o FiE
FEB.0 = % f PUQLy(cos O)et* 1 di.

—oohi€

@2.11)

Again, splitting up the integral at the origin and
making 41— —4 in the integral from —oo £ ie to 0,
we find, with the help of N, (6.25),

oFie

o, 0) =F éﬁ pUP;_3(—cos 0)

X e tan (#M)AdA. (2.12)

On the other hand, expanding the integrand in the
last member of (2.8), we find

foB, 0) = i (_l)mfZPUPi—%(_COS 0)

1
ﬁ m=0 —
x exp [i(2m + 3)mAlAdA. (2.13)

All of the above representations are exact. The choice
of an appropriate one among the manifold possi-
bilities is determined by the ranges of values of the
refractive index and by the direction under considera-
tion, as will be seen later.

The asymptotic behavior of e"*pU as |i| - oo
follows from Paper I, Figs. 14 and 21. Since it
is an even function of A, it suffices to consider
its asymptotic behavior in the upper half-plane, which
is shown in Fig. 1. We see that it tends to zero

H. M. NUSSENZVEIG

everywhere, except in the shaded regions in the
neighborhood of the imaginary axis, where its
maximum degree of divergence (neglecting factors
such as powers of 1) is given by

e"pU = O(e" 1), (2.14)

On the other hand, e***P, ;(—cos 0) behaves like
¢'4r+0) in the upper half-plane, so that we can always
close the contour in (2.13) and reduce it to a residue
series:

fa.B, 0)
= fares(Bs 0) + f,res(B: 0)
2mi
K
x exp [i2m + 37wdl}i; s,

M8

(—1)™ > residues {1pUP,_4(—cos 6)

0

(2.15)

where f, .., corresponds to the sum of the residues at
the poles 4, and f; ., to those at the poles —1/,.
However, since [cf. N, (C7)]:

e~ QP 1(cos ) = O[e *T0) (|A] - w0), (2.16)

e QM (cos ) = O[e"*™ ] (|A| > ), (2.17)
it follows from (2.14) that, for any value of 0, there is
always some neighborhood of the imaginary axis
where the integrand of (2.7) or (2.11) diverges at
infinity [note that (2.16) improves the convergence
in the lower half-plane and (2.17) in the upper one].
Thus, there is no domain of values of 8 in which
Jso land, consequently, fy(B, 0)] can be reduced to a
pure residue series.

This already shows that the structure of the shadow
region for the third term of the Debye expansion is
quite different from that found for the previous two.
We shall see that this is related with the existence of
complex saddle points in the present case. Our next
task is to study the location of the saddle points for
(2.7) and (2.11).

B. Ray Behavior According to Geometrical Optics

In the geometrical-optics approximation, the third
term of the Debye expansionis associated with rays
transmitted through the sphere after one internal
reflection, like the ray 3’ in Paper I, Fig. 5. Three
possible types of ray trajectories, leading to three
different relations between the scattering angle 6 and
the angle of incidence 8, and angle of refraction 6,,



SCATTERING BY A TRANSPARENT SPHERE. II 129

7?4”‘72‘*3_271 /7?4/"’% nz“’%‘ Im\l T)z—r-% 1’21»-%
\(// d ///// / \ ’/" ,”
\ /1% / i‘ /
\ / [+%] )‘ ;
\ ) 7
v, )\%\\7\ \ f I/I
— N HmA Y -2 i 6 L2110, .
ANV Y — X7 exp (210, , —~he ' e
A T O
-0 \ooo ! / / (W>
\ \ \ [ ;
\\ &\ \ / ; —0
\ \ * /
* \ / /
\ \ £ /
\ \ / /
\ \ / /
\ A / L N
- -8 o) B « Re A
(@) N>1
"Qr”?z—*ézl /Wz-*% Th—)% ImA m_,_% Y?z“"%
\'\// /\ /// /r :, ;
\\ / \E / 7
v \ ]
N !
//\K/'\ / / / /I /I
) v I
ST AN b (M) S i F o
(_Lj}i_ 22 \\ -2|1|(W4+T22'-3—;§§ 4 /I — e ,I _))qe(ﬂ)\_
X LT ‘ \ e \ // —0 /f x<22dﬁ)27\
—‘)O \\ 00 \\ -2 00 ’\ —> o0 —_— O /I K/ 4)\1
\\ \\ X / ;. —0
' \ \ / Y
\ % / /,r
\ \ /
\ \ / /
\\ \\ // II -
-B -ol 0 x 2 Re X
(b)Y N<1

FiG. 1. Asymptotic behavior of eir4p(4, B)U(4, B) as || — oo in different regions of the A plane. (a) N > 1;(b) N < 1. X—vpoles. The function
diverges at infinity in the shaded regions and tends to zero elsewhere. The notation is the same as in I, Fig. 14.

are shown in Fig. 2. We have, of course, It is readily verified that any possible ray trajectory
6 leads to one of these three relations. Relation (2.19)
sinf;, = Nsinf,, 0< 01 < ;l, 0oL holds for 2(26, — 6,) > =, i.e., 6; > 0, ,, where
2
@18 m _ N 8\
The three possible relations are sin 6, = sin (26“ 2) T [1 + (1 + Nz) :\’
0 = 220, — 6,) — m, (2.19) (2.22)
6 = — 2020, — 6) (2.20) which is only possible for N < 1 [Fig. 2(a)].
== — 2 - 1 'Y .

If N < 1and 6, < 6,,, we have to employ (2.20).
6 ==+ 220, — 0,). (2.21) This relation also holds for N > 1, provided that
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(@)

20, — 6, > 0. The angle 6, , such that

20,4 —0,4=0 (2.23)
is characterized by
cos 0, 4 = (N2 — 2), (2.24)
so that such an angle exists only for
V2< N2 (2.25)
Thus, if
1< N<V2, (2.26)

we have 0 < 2(20, — 6,) < =, and (2.20) is the only
valid relation. On the other hand, if NV is in the range
(2.25), we must employ (2.20) for 6; < 6, , and (2.21)
for 6, > 0, . Finally, if N > 2, wehave 20, — 6, <0,
so that (2.21) is the only valid relation [Fig. 2(c)].

In all cases, 6, = 0 yields 6 = =, corresponding to
the central ray that is reflected backwards after
transmission. For N < 1, the limiting incident ray
that is transmitted corresponds to the critical angle,

,=6,=sin1N, 6, =2 (N<1), (227

and, according to (2.19), the corresponding scattering
angle is § = 6,, where

§,=m—20,=2cos'N (N<1). (2.28)

This is the same shadow boundary angle already found
in Paper I, Fig. 8(b) and Paper I, Fig. 13(b).
For N > 1, the limiting incident ray is

-1

(N>1). (229

Z |~

01= ’ 02=01=Sin

iy
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(b) ©

Fic. 2. Three possible ray trajectories according to geometrical optics and the corresponding relations among 8, 8,, and 8,. All possible
trajectories for this class of rays lead to one of these three relations. (a) N <1, 220, — 0,) > 7, 0 =220, — 0,) — m;(b) 1 < N < 2,
0< 220, —0) < 0=n—2020;, —6,); () N> 2,220, — 6,) <0, 0 = 7 + 220, — 8,).

In the range (2.26), according to (2.20), the corre-
sponding scattering angle is § = 0, where

6, = 4(7—27 — 61) =20, = 4cos‘1$ I<N<L \/5),
2.30)

whereas, for N > \/ 5, we have to employ (2.21) and
we find for the limiting scattering angle

0, =48, (N> 2. (2.31)

Let

y = sing — tcos (20, — 6),  (2.32)
where the - sign corresponds to the relations (2.20)
and (2.21), and the — sign to (2.19). Taking into
account (2.18), we find

dy sin (26, — 6,)
- = F —————=(2 6, — N 0,). (2.33
do, N cos 8, (2 cos 6y cos B (2.33)

The sign of dy/df, tells us whether the scattering angle
Is an increasing or decreasing function of the angle of
incidence. The change from — to + sign in (2.33)
occurs only for N < 1, at 6, = 0,, [cf. (2.22)], which,
by (2.19), corresponds to ¢ = 0. Otherwise, dy/d6,
changes sign only at 0; = 0, 4 [cf. (2.23)], which occurs
only in the range (2.25) and corresponds to 6 = =,
and for 6, = 6,5, where

2cos b, = Ncos by, (239
which leads to
4 — NA}
sinb,p =s = ( ),
3
2 _
cos Oy = ¢ = (N : 1) . (2.35)
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This is only possible for I < N < 2. The correspond-
ing scattering angle is 6 = 0z, where

Yp= sin%‘12 =£8——-|;—NI%2)—C, cosgf =—;;. (2.36)
As will be seen later, 0 is the rainbow angle.
According to (2.30) or (2.31), we have
VL = sin% = sin (20,) = %%I , (2.37)
where [cf. Paper I, (2.53)]
M= (N2—=1D} (N>1). (2.38)

Thus, in the range (2.26), 65 is always smaller than the
limiting angle 0. However, in the range (2.25), we

() V2<NCN,

8,0 o

tery N>»2
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have
0 <0, (N<Ny), b>0, (N>Np), (239
where
Ny = (6v/3 — 8)t ~ 1.547. (2.40)

The above discussion enables us to give a complete
description of the behavior of ¢ as a function of 6,,
for all ranges of the refractive index. The results are
graphically displayed in Fig. 3.

Let us start from 0 = = at 6, = 0. Fig. 3(a) shows
that for N < 1, 0 first decreases from = to 0 as 0,
increases from 0 to 8, [cf. (2.22)], and then increases
again from 0 to 6, [cf. (2.28)] as 9§, increases from 0,,
to 6,. Thus the domain 0 < 6 < 0, is covered twice:
once by rays arising from (2.19) and once more by
those from (2.20); there are two rays passing through

Fic. 3. Division into regions according
to geometrical optics, for all ranges of the
refractive index N. The behavior of 8 as
a function of 0, is indicated by the circular
arrows, which point in the direction of in-
creasing 0, . The values of 6, at the turning
points are indicated. The number of geo-
metrical rays passing through a given
direction is indicated in each region.

(d) Ny<N<2



132

each direction in this region. There is no geometrical
shadow (0-ray) region for N < I: there is only a
1-ray[2-ray shadow boundary.

For 1 < N< \/2 [Fig. 3(b)], we have a turning
point at 6, = 6, ; the corresponding scattering angle
0 is the angle of minimum deviation. The rainbow
appears around this angle, which is a 2-ray/O-ray
shadow boundary. The angle 6, is a 1-ray/2-ray
shadow boundary.

For V2 < N < 2, there is, in addition to 6, = 6,5,
another turning point at 6, = 6, , [cf. (2.24)], beyond
which (2.20) is replaced by (2.21). For 6, > 0,,, 6
decreases from 7 to 07 [cf. (2.31)], where, by (2.39),
0 > 05 for N < N, [Fig. 3(c)] and 6, < 05 for
N > N, [Fig. 3(d)]. Thus, for N < N,, the rainbow
occurs at a 2-ray/0-ray boundary, whereas for N > N,
it occurs at a 3-ray/l-ray boundary, which should
make it more difficult to observe. In the whole domain
V2 < N<2, the neighborhood of the backward
direction is covered by three rays.

Finally, for N > 2 [Fig. 3(e)], there are no turning
points: we find only a 1-ray and a O-ray region, just
as for the previous terms of the Debye expansion.

C. The Saddle Points for 1 < N < V2

From now on we shall deal mainly with the range

1<NL \/ 2, for which the ray directions are deter-
mined by (2.20). The appropriate representation for
+o(B, 0) in this range is given by (2.7). In fact, as will
now be seen, the saddle points on the real axis for the
integrand of (2.7) are associated with the rays (2.20).

To determine the saddle points, let us consider the
behavior of the integrand in the neighborhood of the
real axis, between A = 0 and A = , where the real
saddle points must lie. The integrand differs from the
corresponding one in Paper I, (5.29) only by a factor
—p(4, ), so that we can employ approximations
similar to those leading to Paper I, (5.36). With the
change of variables [Paper I, (5.35)],

A= fsinw, = asinw,, (2.41)

we find [cf. Paper I, (3.15)]

cos w; — N cos wz)
cos wy; + N cos w,

o B) = i
X exp {Ziﬂ[N cos wy + (w2 - g) sin w{l}

i
(1 4 &tan®w,)

X {1 —
{ 4ot COS Wy

Lo 2
_ itantw, O(ﬂ‘z)}. 2.42)
o COS Wy

H. M. NUSSENZVEIG

Taking into account Paper I, (5.36)-(5.38), this
leads to

;;l f pUQP(cos B)7 dA

3
< —ac( 2y
7 sin 6

xfC(wl, B, 0) exp [iBow(w,, 6)] dw,, (2.43)
where

w(wy, 0) = 2[2N COS Wy — COS W;

+ (2w2 o, =TT 0) sin wl], (2.44)
C(ws, 8, 6)

(cos w; — N cos w,)
(cos wy + N cos w,)?

= (sin wy)! cos? w; cos w,

i 1
x {1 - 1 5 tan®
{ +ﬂ[4cosw1( + Stan®w))

2
- _1__(1 + § tan® wy) — 2 tan” w,
2N cos w, N cos w,
2
‘”w%—@”}+mﬁﬂ (2.45)
cosw, 8sinw,

In the derivation of these results, in addition to
[N, Eq. (CT], we have employed the Debye asymp-
totic expansions [Paper N, (A16)] for H1-2(8). The
domain of validity of these expansions in the A plane'?
is represented in Fig. 4 by the oblong-shaped region
bounded by the curves in broken line, from which the

domain
Al — B = O(BY (2.46)

also has to be excluded. Thus, we can employ (2.43)-
(2.45) to locate not only real, but also complex saddle
points (if any) contained within this region.

Taking into account Paper I, Eq. (5.39), we find

Ow[0w; = 2 cos wy[2wy, — wy — 37w — 0)], (2.47)
so that the saddle points are determined by

Wy=10,, Wwy=20,, A= fBsinf, =asinb,, (2.48)

12 G. N. Watson, Theory of Bessel Functions (Cambridge Univer-
sity Press, London, 1962), 2nd ed., p. 265.
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FiG. 4. Saddle-point trajectories in the A plane as a function of f for 1 < N < V2. ®—:"; O—z', where z = /B [ef. (A7)]. The limiting
angle 8, is given by (2.30) and the rainbow angle 6, by (2.36). The two saddle points coalesce at § = 6. For < 6, they move apart in
complex conjugate directions. The oblong-shaped region is the domain of validity of the asymptotic expansions employed in (2.43)-(2.45).

where 0, and 0, are related to 6 by (2.20). This justifies
our choice of the representation (2.7). [As is readily
seen with the help of [I, Eq. (C7)], had we chosen,
instead, the representation (2.11), the resulting saddle
points would correspond to (2.21). Thus, this would
be the appropriate choice for N > 2.]

In order to determine the saddle points, we have to
find the real and complex roots of (2.48), (2.20) that
lie within the domain under consideration. This is
done in Appendix A. The results are graphically
displayed in Fig. 4, which shows the trajectories
described by the saddle points in the A plane as 0
changes.

For 6, < 6 < m, the l-ray region in Fig. 3(b),
there is only one saddle point, given by 1/8 = sin §, =
z”, where z” is defined in (A7). This saddle point
moves from the origin to the point z; as § decreases
from = to 0.

At 6 = 0, [cf. (2.30)], another saddle point z’ [cf.
(AT)] appears at 4/8 = 1 and, as 6 decreases from 0
to 0, the two saddle points move towards each other.
[This is not quite correct, since the Debye expansions

employed in (2.43)-(2.45) fail in the domain (2.46);
we shall see in Sec. 3 how to treat the region § ~ 0.]
Their confluence takes place at the rainbow angle
0. Thus, for 0p < 0 < 0, there are two real
saddle points, corresponding to the 2-ray region in
Fig. 3(b).

Finally, for 6 < 05, the two saddle points become
complex. They leave the real axis at right angles and
describe complex-conjugate trajectories. This corre-
sponds to the O-ray region in Fig. 3(b). However, the
saddlepoint positions are given by (A7) only as long
as they fall within the oblong-shaped domain indicated
in Fig. 4. Outside of this domain, i.e., deep within the
geometrical shadow region, the results are no longer
valid. To evaluate the complex saddle points under
these conditions, we would have to substitute (2.43)-
(2.45) by the appropriate tepresentation, valid outside
of the oblong-shaped region. However, as will be
seen in Sec. 3C, the contribution from the complex
saddle points no longer dominates the amplitude in
the deep shadow region, so that the corresponding
results will not be required.
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(iv) 0-RAY REGION

F1G. 5. Division into regions for 1 < N < V2 2; 0, = rainbow angle; 6, = 2-ray/1-ray boundary angle. The angular width of the transition
regions is also indicated.

3. BEHAVIOR IN THE NORMAL REGIONS

According to geometrical optics [cf. Fig. 3(b)], there
are three different angular regions for 1 < N < V2.
They are distinguished by the number of geometrical
rays passing through a given direction: O-ray
(0 <0< 0g), 2-ray (6 < 6 < 0p)and l-ray (8, <
0 < ).

If we consider also the corresponding transition
regions, including a transition region near the back-
ward direction, we find six angular regions requiring
separate treatments, as shown in Fig. 5. The width
AB of each transition region will be derived later on.

Region (v), corresponding to the rainbow, and
region (vi), where the glory is found, are treated in
Secs. 4 and 5, respectively. The remaining regions,
which will be called “normal” regions, are treated in
the present Section.

A. The 1-Ray Region
This is the region

0—0,>y, m—0>p", @B.1)
where 6, is defined by (2.30) and y = (2/8)}, as in
(I, Eq. (2.49)]. The restriction to = — 6 > - allows
us to employ the asymptotic expansion [N, Eq. (C7)]
for Q‘z’i(cos 6) in (2.7), thus leading to the representa-
tion (2.43)~(2.45).

For § > 6, we have seenthat there s a single saddle
point, given by

2/ = sin 6; = Nsin 6, = 2", (3.2)
where z” is defined by (A7).
It follows from (2.47) that
P 2cos b,
— 2cosf, — Ncosf,). (3.3
(c’?wf)wl_e1 N cos 6, (2 cos by cos B). (3.3)

Let
cos 0;/cos O, 5 = J3 tan ¢ (0< <72,

where cos 6, is given by (2.35). Then, (3.3) becomes

(4 cos 6,)(0w)/(OW),y,—0, = sin ¢ — 4,

so that

(a“’) >0, for 6, <05,
owe,

(a “’) <0, for 6,> 6,p. (.4)
0y

owi

In the present case (cf. Fig. 4), we have 6, < 0,5,
so that the steepest-descent path crosses the real axis
at the saddle point at an angle of =/4. This leads us to
choose f,-, (rather than f;t) in (2.7). The steepest-
descent path is schematically represented by the
curve in full line in Fig. 6. It must begin and end at
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negative half-integers; (O—saddle point. The integrand diverges as |A] — oo within the shaded regions and tends to zero elsewhere (apart from
the poles). The original path of integration, shown in broken line, must be deformed onto the steepest-descent path, shown in solid line;

this gives rise to residues at the poles 4, and —4,, .

infinity outside of the shaded regions, where the
integrand diverges [cf. Fig. 1 and (2.16)]. In order to
deform the path of integration in (2.7) from (— o —
ie, oo + ie) (curve in broken line in Fig. 6) to the
steepest-descent path (—o,00, 0,00), we have to go
across the poles 4, and —4,, so that we find

TioB.6) = — —ﬂf f ™ aUQPy(cos B)A di

—g1

+ %T Y {residue [ApUQ?j(cos 0)],,

-~ residue [ApUQPy(cos 0)]_,,}. (3.5)

It is irrelevant for our purpose whether the number
of poles crossed is finite or infinite. This depends on
the shape of the path far away from the saddle point,
which will not be investigated here. Actually, only
poles close to the real axis give a significant contribu-
tion. For simplicity, the residues at all the poles have
been inciuded in (3.5) and subsequent relations, but

only trivial changes are required if the number is
finite.

Since A = —A,, is a triple pole (cf. I, Sec. 3B), we
have

residue [ApUQP4(cos )],

2
=19+,

o F1pUQR(cos O)1_,,

Changing 1 — —A on the right-hand side, and taking
into account (2.2), we find

residue [2pUQ?3(cos 6)]_;,
= residue [2e*"*pUQ%_y(cos )], . (3.6)
It follows from N, Eq. (C5) and (C6), that
0% _4(cos 6) = QVy(cos ) — ! — P,_3(—cos 0).
cos (mA)

(3.7
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Substituting (3.6) and (3.7) in (3.5), and taking into
account I, (2.12), we get

fao(B, 0)

it

5 pUQZy(cos B)A d + 2fs red(B, 0)

+ Z[;_T Y residue {2pU[Q:4(cos 6)

— QM (cos )1}, »

where f, .., is the residue series at the poles 4, defined
in (2.15).
It follows from N, Eq. (C3)-(C4), that

(3.9)

0'24(cos ) — ¥ QVy(cos ) = —ie"™P,_y(—cos 6).
(3.9)

Substituting the result in (3.8) and taking into account
(2.15), we find that (2.6) finally becomes

fz(ﬁ, 6) =f2.g(ﬁ’ 0) +f2,res(/35 6) + fé,res(ﬂo 0)
0, <6< m, (3.10)

where

FaoB0) = — é f  pUQPy(cos 01 da,

—@100

g

(3.11)

fmmm=—%§em

x Y residue {ApUP,_y(—cos 0)
x exp [i(2m 4+ D#d]}, , (3.12)
and

Fhrelfs ) = 223 (=)

m=1

x Y residue {ApUP,_y(—cos 6)

x exp [i2m + Dmil_, .. (3.13)

Let us consider first the “geometrical-optic” term
JS2.0(B, 0. The expansion for the integrand in the
vicinity of the saddle point follows from (2.43)-(2.45),
and the saddle point is determined by (2.48) and
(2.20). The path of integration is the image of that
shown in Fig. 6 in the w;-plane.

The saddlepoint evaluation of (3.11) now proceeds
by applying the analog of N, Eq. (6.12), which differs

H. M. NUSSENZVEIG

from I, Eq. (4.34) only by the substitutions:

B—~C, §—w,

Ia”l — _w”,
16")} — —i(w"?. (3.149)

A rather tedious calculation finally leads to the result

AM@=—wa

sin O

(2N cos 0, cos 62)%
(2cos 6, — N cos 02)%

(N cos 6, — cos 0,)
(N cos 8, + cos 6,)°

X exp [2i(2N cos 0, — cos 6,)]

y {1 80, 0)

—2
64 cos 6, + O )}’ (3:15)

where

o
(0, 6) = 8 cot 6, cot 6 ﬁi—l—}
@0 {0+ =

15 9
r—1 (-1

+ 6(9y — 1) —

+ tan® 01[56;(3 — 3y 4 3y — 722

< I S &
22— 1) 42— 42— 1)3}

(3.16)
and, as in I, (5.47),

y = (dl) ~ Cosh
dw s, Ncosf,

The relation between 6, and 6 follows from (3.2) and
Appendix A, so that, in principle, everything can be
explicitly written as a function of 6, but the resulting
expressions would be enormously complicated.

The result (3.15) should be compared with I, Eq.
(5.45). 1t contains an additional factor corresponding
to the internal Fresnel reflection coefficient, as well as
the phase factor appropriate to the ray path shown in
Fig. 2(b). The denominator (2cosf; — Ncos 6,
would vanish only at the rainbow angle (2.34), but this
falls outside of the region (3.1).

Let us consider next the residue series at the poles
A,, given by (3.12). Substituting p and U by their
definitions I, Eq. (3.15) and I, Eq. (3.24), and taking

(3.17)
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into account 1, Egs. (3.4)-(3.8), we find [cf. I, Eq.
5.17)]:

furol0) = = 225 3 (=1
. Cm(la /3’ 0)]
X g residue {—[d(l, B Iln, (3.18)
where, as in I, Eq. (4.38),
d(4, B) = [1 f] — N[2 o] (3.19)
and
_ . H ()
c.(4, B, 8) = dexp [iCm + 1)7mi] HPG TP T
x ([1 #1 — N[1 «])P;_y(—cos ). (3.20)

The residue of the expression within curly brackets
in (3.18) at a triple pole is given by (cf. Ref, 9,
Appendix II):

residue {—Cm(l’ p, 0)}
[d(Z, B)) J 1.
¢, ¢ Cmd e d
2d3|:cm Cm d + (d) d:ll,. 3:21)

where the dots denote partial derivatives with respect
to A and all quantities in the second member are to be
evaluated at the pole 4, .

Let us evaluate (3.21) to lowest order, just as we
did for I, (5.22) [in Sec. 5C, we shall have to reevaluate
(3.21) with much greater accuracy). For this purpose,
we employ the asymptotic expansions N, (A16) for
H{?(x) and N, (Cl1) for P, y(—cosB) (this is
allowed since 7 — 6 3> f1), and the expansions given
in I, Appendix A, for H{V(f) and its derivatives with
respect to 4 and f. Keeping only the dominant term
in each expansion and neglecting corrections of order
y2, we find the following final result:

f2,res(/3’ 0)
ey b .
R exp (4iM
M2 <rrsin0) P (4iMP)

x {z’ S (@)U + Mol exp (iTalto)
+ 3 (=" 3 @l + ML)
X cXp (l}“ngg—,m) - [(C;,mf + Mcz_,m]

X exp (il,,{z‘,m)}}, (3.22)
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where [cf, (2.30)]

fn=2mm—20,+0=2mmr—0,+6

(m=0,1,2,---). (3.23)

For the general evaluation of the dominant term in
the residue-series contribution at the poles 4,, of
which (3.22) is a particular case, see Appendix C.

Just as in Paper I [Eq. (5.24)], we can rewrite this
result as follows:

f2,res(ﬂ’ 0)
A i(sin 0)_% exp (4iMf)

X Z D2D21D12[ﬁ11g_2k.0 + %D21D12(C;0)2]

x exp (id,{30) + z =n~ 2 DDy, Dy,
m=1 n

X [(Eul‘{,m + %D21D12(§;—,m)2) exXp (llnz—;m)

+ iRy + 3Dy Dol ) €xp (mnc;m)l},

(3.29)
where, as in I, (4.45) and [,(5.25),
D, = b (ylma), (3.25)
D, D, =2/M, (3.26)
with M given by (2.38) and
R,y=1. (3.27)

The physical interpretation of this result in terms of
diffracted rays is similar to that of I, (5.24) (cf. also
I, Fig. 15). As shown in Figs. 7(a) and 7(b), the
tangentially incident rays at T, and T,, after under-
going two critical refractions and one total internal
reflection, reemerge tangentially to define the 2-ray/
l-ray shadow boundary at the points T,” and T,
respectively. At these points, they excite surface waves
propagating from the shadow boundary into the
shadow (i.e., into the 1-ray region). This gives rise to
the diffracted rays T,T,T,T,B [Fig. 7(a)] and
T,T,T|TA [Fig. 7(b)l. The corresponding angles
described along the surface are {J, and {5, respec-
tively, and after additional turns around the sphere,
the angles are given by (3.23).

As in I, Sec. 5B, there are again infinitely many
paths leading to the same direction of emergence for
this class of diffracted rays. Their common feature is
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Fic. 7. Physical interpretation of (3.24). The limiting rays (a) ToyT 3T, and (b) T, T ;Tf which define the 2-ray/1-ray shadow boundaryexcite

surface waves propagating into the shadow, generating the diffracted rays () T, T, T:T 2B and (b) T,T ;T iT

s

1A, in the direction 8. The corre-

sponding angles described along the surface are {3 , and {3 , , respectively. There are infinitely many possible paths for this class of diffracted
rays: (c) type-I rays describe an angle ¢, as surface waves before penetrating again into the sphere; (d) type-1I rays describe two angles, ¢,

and ¢, before emerging to describe the final angle {7 o — ¢ — ¢s.

that, for all of them, the diffracted rays take two
“shortcuts” across the sphere. They can be subdivided
into two types (cf. Ref. 9), as illustrated in Figs. 7(c)
and 7(d) for {f,.

Type-1 rays [Fig. 7(c)] are those which, after
excitation at T, (with diffraction coefficient D,),
describe an angle ¢, (0 < ¢, < {},) as surface waves,
are critically refracted into the sphere at T, (coefficient
D,;), undergo total internal reflection at T, (coefficient
R,)), reemerge at T, (coefficient Dy,) to describe the
final angle {f, — ¢,, and finally leave the surface
tangentially at TIV (coefficient D). As in I, Sec. 5B,
the contribution from those paths such that an angle
between ¢, and ¢, + dd, is described is proportional
to d¢, , so that the total contribution from type-I rays
is proportional to

Tn0” -
DiDleuknJ; d‘h = D§D21D12R11§;0~ (3.28)

Type-1I rays [Fig. 7(d)] differ from type-I only by

the fact that, instead of undergoing total internal
reflection at T, they are critically refracted to the
outside (coefficient D,,), deseribe another angle ¢,
O0O< ¢ +¢<{f,) as surface waves, and are
critically refracted to the inside at T," ; thereafter, they
behave as type-I rays. The total contribution from

type-II rays is therefore proportional to

dé, dd,

0S¢ytda<lan”

sz(D21D12)2

~a,0 1

Cz,o+
= DDy D) f ah| " e

0

= DDy D 1)’ (L50)". (3.29)

The phase factor exp (4iMp) in (3.24) accounts for the
optical path difference associated with the two short-
cuts. A similar discussion for a cylinder has been

given by Chen.®
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Finally, let us consider the residue series at the poles
—1,, given by (3.13). With the help of (3.6), we can
rewrite (3.13) as

27 &

f;,res(ﬂ’ 6) = _/?' Z (_1)m 2 residue

x {ApUP;_y(—cos 0)
x exp [—i(2m — 1)7A]}, .. (3.30)

Except for the change in sign and the exclusion of
m =0, we can still apply (3.18)-(3.21), the main
difference being that the residues are now to be
evaluated at 4, , rather than 4,.

The approximations empioyed for the evaluation of
(3.30) are the same as for I, (5.27), except that (3.20)
contains also H{"(«). According to I, (3.35) and 1,
(A1), we have

e—i

73 .
Ai (€7%,),

H;lu’l(oc) A2 —— (3.31)

where ¥’ = (2/a)}, as in I, (5.62). It follows from the
Wronskian relation N, (D3), that
iw/8

. e
Ai(e™*x,) = —

(3.32)

2na),
Taking into account these results, we finally obtain

e"2N? exp (2MP)
47M (my’ sin 6)*

FiresB 6) ~
x {z @) (T exp (—ik, L)

+ 2}— D™ S (@) (&)
x exp (—itn3m) — i({s )

X exp (—iz;z;,m)l}, (333)

where

E,=2mnm —2icosh™ N+0. (3.34)

For N < 1, the general evaluation of the dominant
term in the residue-series contribution at the poles
A, is given in Appendix D.

This result should be compared with I, (5.27). As
in that case, f, .., is exponentially small as compared
with f; ..., and can therefore be neglected. As will be
seen in Sec. 7F the reverse is true for N < 1, and the
analytic continuation of (3.33) to that case has a
physical interpretation similar to that of I, (5.65).
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The limitation to 6 — 6 > ¥ in the domain of
validity of the above results [cf. (3.1)] arises from
(3.22): This is the domain where the least strongly
damped series, involving exp (id,{},), is rapidly
convergent.

B. The 2-Ray Region

This is the region

0. — 0>y, 0 —0»y} M. (3.35)

In this region, in addition to the real saddle point
z”, with 6, < 0,5, there is another real saddle point
z', with 0; > 0,5 (cf. Fig. 4 and Appendix A).

According to (3.4), the steepest-descent path at the
new saddle point z’ crosses the real axis at an angle of
—r{4, so that the path of integration shown in Fig.
6 must be replaced by the new path shown in solid line
in Fig. 8.

In order to deform the path of integration in (2.7)
from (—oo —.ie, o + fe) (curve in broken line in
Fig. 8) to the new path (—o,00, d,00), we have to go
across the poles —4,, and 4, so that, instead of (3.10),
we find

fz(ﬂ’ 0) =f;,y(/3’ 0) + f;,res(ﬁ’ 6) +fé,res(ﬂ’ 0)a (336)

where

FuslB,6) = — é f " UQWy(cos A di, (3.37)

—61%0

fz“'“(ﬂ’ 9) =f2.res(l3’ 6) — ZF"T

X 3 residue [ApUQP y(cos 6)];,,  (3.38)
fé,res(ﬁ’ 0) =fé.res(ﬁa 6) — %

x 3 residue [ApUQPy(cos O)], ., (3.39)
n=1

where f, .., and f, ., are given by (3.12) and (3.13),
respectively, and n, is the total number of poles 1),
crossed by the contour, In order to determine the
total number n, of poles 1, crossed, a detailed investi-
gation of the shape of the steepest-descent path far
away from the saddle points would be required.
For our purposes, it is sufficient to know that the
contribution from the poles A, can be neglected.

The “geometrical-optic” term (3.37) now contains
two contributions, one from each saddle point. The
contribution from the left saddle point z” is still given
by (3.15)-(3.17); that from the right saddle point
z' is similar, except that we must now employ I,
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FIG. 8. Path of integration in (2.7) forf, < 6 < 6, . X —poles of pU; ®—poles of Q(f_)%; (©-—saddle points. The original path of integration,
shown in broken line, must be deformed onto the path shown in solid line; this gives rise to residues at the poles —4, and l; (cf. Fig. 6).

(4.34), so that we find

iz.g(ﬂa 0) = .’é.y(ﬂ9 0) +fl2/,g(ﬁ’ 0)7 (340)
where
i ¥ (2N cos 6, cos 0 )%
x, o) = il (i 91) ( 1 o
J2.P 0) l{ (Sin 9) (N cos 6, — 2 cos 0,

(N cos 6, — cos 0;)
(N cos 0, + cos 6,)

X exp [2iB(2N cos O, — cos 6,)]

" [1 - é%}}h (3.41)
”g’g(/g’ 0) = _{ (sin 01)%

(2N cos 6, cos 02)%
sin @/ (2cos 8; — N cos 02)%

‘(N cos 6, — cos 0,)
(N cos b, + cos 6,

X exp [2iB(2N cos 8, — cos 6,)]

X [1 — M]} , (3.42)
64/3 COS 01 sin 6;=z2"

where §(0, 0,) is still given by (3.16), and z’, z” are
given by (A7).

In particular, near the rainbow angle, with

6 =0p+ e (3.43)

PIM K e K 4, (3.44)

the saddle points are given by (A23), and we can also
employ (A25)-(A26). Taking the slowly-varying
factors outside the exponentials in (3.41)—(3.42) at the
rainbow angle 6 = 0, 6; = 0,5, we then find

N ¢t
8 + NOE st

e 16
208, 0+ € =——
f._(ﬂ R ) 27

e—i7/4

x exp [6icB + isPe + O(fed)]
s[5 -6

[
(PIM L e KL 1), (3.45)

where ¢ and s are defined by (2.35). This oscillatory
behavior of the amplitude arises from interference
between the two geometrical contributions (3.41) and
(3.42), which have nearly equal amplitudes close to
the rainbow angle.
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To the same order of approximation employed in
the derivation of (3.22), the residue series (3.38) differs
from that result only by the omission of the terms in

4.
2.0°

N & y i
) , 0~
fz,res(ﬂ ) M2 (77 sin 6)

X exp (4iMP) 21(" n™> (an)?

X (&) + MG ] exp (i4,05,,.)
- [(lg,m)g + MC;m] eXp (llngz_,m)}‘
(3.46)

This is just what we should get, since the surface
wave excited at T, [Fig. 7(a)] now has to describe an
angle 27 — (0, — 0) = {§,< 27 before emerging in
the direction 6.

Similarly, the last term in (3.39) is equivalent to an
additional contribution in {7 , to (3.33), so that we get

L B0 A S (B O) — i ETNE exp CMB) g o
Fores(Bs 0) & fored B, 6) — i =Y (Wyfsmg)%(gu)

No .
X 3 (@) exp (=% 550, (347)

where £, ...(8, ) is given by (3.33) and {5, by (3.34)
with m = 0.

Let us now discuss the domain of validity of the
above results. One restriction arises from the condition
that the right saddle point ', given by (A3) and (A7),
must not lie too close to 4 = 8,

B— 1> B (3.48)
in order that the Debye asymptotic expansions be

valid. One can verify that, in the neighborhood of
0 = 9L7

Z!
1 —==0[0; — 6],
3 [0 — 0)]

(3.49)
so that (3.48) leads to 6; — 8 > y, the first condition
in (3.35).

Further restrictions arise from the condition that
the correction terms in G(0,, 0) in (3.41)-(3.42) be
small. This condition is violated near the rainbow
angle. According to (3.16), (3.41), and (3.42), the
magnitude of the dominant correction terms near

=0zis

15 sin® 6,
2568 12y — 1]® cos® 6,

~ (BIM(6 — 811}, (3.50)

141

where we have employed (A22)-(A26). The require-
ment that (3.50) be much smaller than unity leads to
the second condition in (3.35).

Another condition for the validity of the above
results is that the integral (3.37) be reducible to the
sum of two independent saddie point contributions.
This approximation certainly fails in the neighborhood
of the rainbow angle, when the two saddle points tend
toward each other. A precise estimate of the error is
difficult and will be postponed to Sec. 4. However, a
necessary condition for the validity of this approxi-
mation is that the range of each saddle point be much
smaller than the separation between the two saddle
points. It can be verified that this leads precisely to the
same condition already found, namely, M(0 — 63) >
v%. For an explanation of the concept “range of a
saddle point,” see Ref. 13.

Finally, the domain of validity of (3.45) is much
more restrictive. In addition to the above condition
on B — fp, it is necessary that the neglected terms in
the exponent in (3.45) be small. This leads to the
condition (3.44), so that (3.45) can be employed only
in a very narrow angular domain near the rainbow
angle.

C. The 0-Ray Region

This is the region

Br — 0> v} M. (3.51)
In this region the saddle points become complex.
Their trajectories are partially shown in Fig. 4. Their
behavior near the rainbow angle is given by (A23)-
(A26).

Since the saddle points are complex conjugate, one
of them would give rise to an increasing exponential,
while the other one corresponds to the exponential
decrease expected in the shadow. Thus, the path of
integration in (3.37) must be taken only over the
latter saddle point. With the help of Appendix A,
one can verify that it is the lower saddle point that
gives rise to the exponentially decreasing contribution.
In Appendix A, this point is associated with the root
2" (cf. Fig. 4), so that the “‘geometrical-optic”’ con-
tribution in this region is given by (3.41) alone. This
may be interpreted as a “‘complex ray”.1# The residue-
series contributions are the same as in the 2-ray
region.

¥ N. G. de Bruijn, Asymptotic Methods in Analysis'(North-
Holland Publishing Co., Amsterdam, 1958), p. 91.

14 J. B. Keller, in Calculus of Variations and its Applications,
Proc. Symp. Appl. Math., L. M. Graves, Ed. (McGraw-Hill Book
Co., New York, 1958), Vol. 8, p. 27.
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In particular, if 6 is given by (3.43) with ¢ < 0 and

M K |e| L p4, (3.52)

we can employ (A23)-(A26) and we find, similarly to
(3.45),

8 _, Nt
FooBln+ O m — 2 e _N__
211’g R ) 27 (8+N2)*S

x exp [6icf — isp || + O(BeD)]
xep [~ L (% |e|)%] (5 |e|)_*
XP+OQL9}

(e <0, 3 M L |e] K B~H. (3.53)

Near the rainbow angle, the amplitude is dominated
by this “‘complex-ray” contribution, which describes
the exponential damping away from the 2-ray/0-ray
shadow boundary. However, since the damping ex-
ponent is proportional to §, whereas it is proportional
to pt for the residue-series contributions, the latter
will eventually dominate the amplitude in the
deep shadow region. Thus, the amplitude is more
rapidly damped near the rainbow angle than far away
from it.

D. The 1-Ray/2-Ray Transition Region

This is the region

[0 — 0L <. (3.549)
In this region, we can use all the results derived for
the 2-ray region, except for the contribution (3.41)
from the right saddle point z’, because it would now
violate condition (3.48). The evaluation of this
contribution is entirely similar to that in I, Sec. 5D.
In fact, (3.37) differs from I, Eq. (5.29), only by a
factor

_r. HP@
P 11 Haz,(a)

~ —iexp {2;'[(03 — a5t _ 2 cos ’1]} (3.55)

o
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so that we find, corresponding to I, (5.54),

e 4 O(y)]
7M(2np sin O)F

x J exp {4;‘[@2 —

~ cos™ ﬂ + mo} A‘Z(CO,

where the notation, as well as the path of integration,
are the same as in I, (5.54).
Similarly to I, (5.55), we find from this

fé.a(ﬂr 0)~ —

(3.56)

27" exp [4iMPB + if(6 — 6,)]

f;.y(ﬁ’ 0) = -

M (27p sin 6)*
x 11+ 0 ()
Y
(16 — 0Ll <), (357

where f(s) is Fock’s function, defined in I, (5.57).
This expression now substitutes (3.41), whereas the
remaining results obtained for the 2-ray region remain
valid.

Thus, the l-ray/2-ray transition corresponds to a
normal (Fock-type) transition region. In particular,
similarly to I, (5:58), we find

* 3
[ o 0) exp (4iMp)

ir/3
7186~ ( 4
T S

X 2 (a)*[1 + 016 — 6y)

x oxp 18 + e Ef)(o -6 +17)

@ —0L>»y). (3.58)

Within the order of approximation to which this
result is valid, i.e., 8 — 07> y but still 6 — 6, =
O(y), (3.58) is equivalent to the residue series in
{t, by which (3.22) differs from (3.46) [in fact,
the term ({)? is then O(y) as compared with
ML

Thus, as usual, the Fock amplitude interpolates
smoothly between the 1-ray and 2-ray regions, but
the corresponding representation (3.57) cannot be
employed too far beyond the transition region.
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4. THEORY OF THE RAINBOW

The present section deals mainly with the 2-ray/
O-ray transition region (Fig. 5), i.e., the domain

16 — 65l < ¥?/M, 4.1

where 05 is the rainbow angle, given by (2.36). This
is the region where the rainbow occurs.

A. The Rainbow

The mathematical problem with which we are
confronted in the rainbow region is the asymptotic
evaluation of the integral (3.37) in a domain where
its two saddle points are very close to each other (cf.
Fig. 4). As mentioned in Sec. 1, the extension of the
saddle point method to this situation has only recently
been given by Chester, Friedman, and Ursell.** The
main features of their method are summarized in
Appendix B. The present treatment is a direct applica-
tion of this method.

According to (2.43)-(2.45), we may rewrite (3.37)
in the form

Fou(B, ) = 2e‘”’“N( Sf 0) Fx,0), (42)

where

" g(wy) exp [kf(wy, 0)] dw,,

—ad1%

F(x, 0) = 4.3)

with

k=2, 4.4

fwy,0) = il:2N €OS Wy — COS W,

T - 0) . :l
sin w, |,
2

g(wy) = (sin Wl)i cos® w, cos w,

+ (2w2 — Wy, — 4.5)

(cos w;, — N cos w,)
(cos w, + N cos w,)®

[t + 06N (4.6)

where —&,00 and &,00 are the images of —o,00 and

6,00 in the wy-plane, respectively [cf. (3.37)). For the

sake of simplicity, the corrections of order 8- will not

be evaluated; their evaluation by the method given in

Appendix Bis straightforward, but rather cumbersome.
The two saddle points are given by

w, =0],0], with z'=sinf{,z" =sin 0], (4.7)

where z’ and z” are given by (A7). In the domain (4.1),
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we have

8= 0R + €, Iil « 1’ (4'8)
so that the expansions (A19)-(A26) can be employed.
For definiteness, let us assume, to begin with, that
€ > 0, so that the two saddle points are real.

The integral (4.3) is of the form discussed in Ap-

pendix B. Let us make the change of variables (B2),

S, 0) = 3p® — L + A(e).

According to (B4), (4.5), and (Al), the parameters
{(e) and A(e) are given by

4.9)

A(e) = i[N(cos 03 + cos ;) — L(cos 0, + cos 6],
(4.10)
_?;[C(e)]% = i[N(cos 0; — cos 05) — }(cos 6; — cos 87)],
(4.11)

where 6, 6, are the values of 6, corresponding to
(4.7), and we have made the association [cf. (B3)]:

0; — —t¥e), (4.12)

In particular, for |¢] & 1, we can employ the ap-
proximations (A19)-(A27), with the following results:

67 — ¥e).

. . c(ilc® — 15) & 3
Ale) = 1[36 + ¥se + € + O(e ):l
(4.13)
2 ot = 2. (ce)
3 [ = 3 ( 3 )t
(8750 — 1257¢* + 657¢% + 45) 2
X [ 5760(cs)* €+ 0 )]’
(4.14)

where s and ¢ are defined by (2.35).

The main contribution to the integral (4.3) arises
from the neighborhood of the saddle points, where,
for small enough ¢, (4.5) may be expanded in powers
of

w = Wy

~ 01, @.15)

with the following result:

f(wy, ) = i[3c +§-e+§ew—iew2

- (5 + j;) + O(w“)] (4.16)
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Fi1G. 9. The mapping of the w plane onto the u plane in the neighborhood of the origin.

For small enough e, it also follows from (4.13)-
(4.16) that, in the relevant portion of the path of
integration, the transformation (4.9) is approximately
given by

W33 ~ —isw?/[8. 4.17)

In solving (4.14) and (4.17) to determine {(¢) and
w(u), care must be taken to choose the appropriate
phase factors corresponding to the regular branch
of the transformation. This branch is characterized
by the condition that (4.12) holds on it (cf. Appendix
B). The correct choice is

o ~ —2iu/(35)}, (4.18)
—iT Ce
= " —
{e) Gt
6 4 2
9 [1 +(875c — 1257¢* + 657¢ +45)€+0(€2)].
8640(sc)®
(4.19)

In fact, if we set u= —{ (u={?) in (4.18),
substituting { by (4.19), we find, respectively, w = 6’
(w = 6"), where 6’ and 6" are given by (A21), in
agreement with (4.12).

According to (4.18), the mapping of the w plane
onto the x plane in the relevant portion of the path of
integration is as shown in Fig. 9. The path through the
saddle points in Fig. 9(a) has been chosen in such a
way that the transformed path in the u-plane runs
from e~*"/*co to e'"/3c0, as shown in Fig. 9(b).

>Re it
(b)
Following (BS5), we now expand
Glwy.r &) = glw) 22
dp
=3 pu(p® — O™
+ 2 ga(Op® — O™, (4.20)

where the coefficients p,,(¢), ¢,,(¢) are obtained by
repeated differentiation of (4.20), setting w, = 0;,
u= —_tand wo=0,u= £}, Thus,

pole) = 3G, ©) + G(B], e, (4.21)

qu(e) = 3HG(6], €) — G(6], €], (4.22)
o) =3t 4G g - 46 €

o) =} [ PRGIDE A0S )} 4.23)

ae) = zz[g’—i 9 + gf ], 0 — 2q0(e>}
(4.24)

and so on. We shall compute explicitly only the co-
efficients p, and ¢,.
Differentiating (4.5) twice with respect to x4 and

setting p = — 3, w, = 0, we get, taking into account
(A1),
r 2
2t = cos b (2 cos 6; — N cos 64)(@—1
N cos 0, du Je,

(4.25
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and, similarly for 6], with —3 - 0 —>06]. It
follows that

(%) . ,4[ 2N cos 0; T &
du Joy cos 0;(N cosf; — 2 cos 87)
(4.26)
(dwl) _ _“,/4[ 2N cos 0; Tﬁ
du o, cos 0(2 cos 6 — Ncos 65) | ~°
(4.27)

where the phase factors have been determined by the
requirement that, for |e| < 1 [cf. (4.18)],

(k= G~ =5
du oy \du /oy Gs)t
Employing the approximations (A23)-(A26) and

(4.19) in (4.26)-(4.27), we find that (4.28) is indeed
verified.

(4.28)

Substituting (4.26), (4.27), and (4.6) in (4.21)-.

(4.22), we find
po) _ e i[ sin 0y :
{qo} 4N (2 cos 0] — N cos 62”)
(cos 8] — N cos 6,))

X (2N cos 64 cos 0;’)%

(cos 67 + N cos 6,)°

sin 6 i 2
2N cos 6; cos 6,
+ (Ncos 0§—2cos@{)( i cos B2)

(cos 6; — N cos 6,) 1
L4+ 0 , (4.29
(cos 6, + N cos Bé)“:l[ O 429

where upper and lower signs correspond to p, and ¢,
respectively, { is given by (4.11) and 0}, 6, by (4.7).

In particular, for |¢| < 1, we may employ (A23)-
(A26) and (4.19), so that (4.29) becomes

41(3s) c

pole) = 275N [1 + O(e)], (4.30)
Go . @8=31®)
qof€) 273 NGs )_[ + 0(eh)].  (4.31)

If we now substitute (4.9) and (4.20) into (4.3), we
find, by (B6),

F(k, 6) = 27i exp [KA(e)][% Pl OF Ly K, C)

+ 3 4G (L 1, cl)], 4.32)
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where F,, and G,, are defined by (B7)-(B8) and the
contour C, by (B9) (cf. Fig. 9).

Taking into account (B10) and (B12), we finally
obtain

F(k, 0) = 2mix—¥ exp [xA(e)]
X {[po(€) + O] Ai (1))
— k¥go(e) + O DAL (B0)}, (4.33)

where Ai (z) is the Airy function. Thus, taking into
account (4.4), (4.2) finally becomes

FoalB 6) = 4e”"*N( ) 2B)* exp [26A4()]
x {po<e) AL [28) ()]

— DD pi ()it + o
L AreH) @il + 07y,
(4.34)

where A(¢), {(€) are given by (4.10)-(4.11), py(e) and
qo(€) by (4.29), and 07, 6, by (4.7).

Higher-order terms in the Chester—Friedman-
Ursell uniform asymptotic expansion of the scattering
amplitude may be obtained, if required, by means of
the procedure indicated in Appendix B. Here we shall
restrict our consideration to the first two terms, given
by (4.34).

In particular, for |¢] & 1, we may employ (4.13),
(4.19), (4.30), and (4.31), so that (4.34) becomes

__ leet i
Fuslh 0 = =S5 ( ) (65)
x exp [6icf + isfe + iABe® + O(Be)]
x { [l + O() + O8]
X Ai C(zﬁ)€1+$€+062
i [ R ( ))]
~ €1 4o + o
o ) + (8]
A., C(2ﬁ) € 2
« Ai [ SR 0 +O(e))J}
4.35
where ( )
_c(11c® — 15)
o=, (4.36)
 875¢% — 1257¢* + 6572 + 45
B =
8640(sc)? - (4.37)
28 — 31s?
c=2"25
4c(3s)§ (438)
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The result (4.35) is a good approximation through-
out the domain where the indicated error terms are
small, i.e., for

lel K y. (439

This is true, in particular, within the rainbow region
(4.1).

We can still employ (4.35) over part of the domain
(3.44), in the 2-ray region, where the Airy functions
may be replaced by their asymptotic expansions
(B15)-(B16). With the help of (2.36), it is found that
the result is equivalent to (3.45). The corresponding
oscillations, arising from interference between the
two geometrical ray contributions, give rise to the
“supernumerary bows” sometimes seen on the inner
side of the main rainbow.

For still larger scattering angles in the 2-ray region,
we can no longer employ (4.35), but (4.34) remains
valid. Again with the help of (B15)-(B16), taking into
account (4.29), we find

- 3
Ja.oB, 0) = (sitll 9) {(2 cos e;liejlv cos 95’)
) s 0y — N cos 65
X (2N cos 6y cos b, ) ((COS 6 + N cos 6,
x exp [284(c) — $BL4(O)]
i ( sin 6; )%
N cos 8 — 2 cos 6;
os 6; — N cos 03)

2N cos 0] cos B
X (2N cos 6 cos )( os 0] + N cos 6;)°

x exp [284(e) + %54%'&)]}[1 + O(F ).
(4.40)

In view of (4.10)-(4.11), this coincides exactly with
the result (3.40)-(3.42) of the saddle-point method.
Thus, the Chester-Friedman—Ursell method leads
indeed to a uniform asymptotic expansion, matching
smoothly the result obtained by the saddle-point
method in the region where the latter is valid.

In the O-ray region, within the domain (3.52), we
may again employ (4.35), but now, since € < 0, we
must employ the asymptotic expansions (B13)—(B14)
for the Airy functions. The result is identical to (3.53),
corresponding to the exponential damping on the
shadow side of the rainbow (dark band between
primary and secondary bows).

H. M. NUSSENZVEIG

For still larger scattering angles in the O-ray region,
the Chester—Friedman~Ursell method would appar-
ently have to be extended in order to match smoothly
with the saddle-point method, since the coefficients
(4.29) depend symmetrically on both saddle points,
whereas, according to Sec. 3C, only the lower saddle
point contributes to the steepest-descent result (cf.
note A in Ref. 4, p. 126).

B. Comparison with Earlier Theories

An excellent review of the development of the theory
of the rainbow has been given by Van de Hulst
(Ref. 7, p. 240). A more detailed historical account
may be found in Ref. 15.

Airy’s theory?® still remains the best approximation
so far available, other than numerical summation of
the partial-wave series. It is based on the application
of Huygens’ principle to the cubic wave front near the
ray of minimum deviation. Van der Pol and Bremmer?*®
applied Watson’s transformation to the electromag-
netic problem, but the expression thus obtained was
finally reduced to Airy’s approximation. The same is
true for Rubinow’s treatment?? of the scalar problem.
Bucerius!® attempted to improve Airy’s approximation
by including terms up to the fifth order in a Taylor
series expansion of the phase around the rainbow
point [similar to (4.16)]. However, this does not lead
to a uniform asymptotic expansion.

Airy’s approximation may be obtained from (4.35)
by retaining only the lowest-order term in all ex-
pansions, including those that appear in the argument
of the exponential and Airy functions. This corre-
sponds to setting

A=B=C=0. (4.41)

Substituting also sin 8 by sin 8, and ¢ and s by their
values [cf. (2.35)-(2.36)], we find

(Auy)(ﬁ 6)
16 37%

YR

NY(N? — 1t
8 + N4~ N

ur/4

‘g%

X exp { j [6(N* — 1) + (4 — NH}(6 — 012)]}
(N? — 1)

xAi[ (4_N2)%(2ﬁ)( —-GR)]

which is Airy’s approximation. The factor in front of

(4.42)

15 C, B. Boyer, The Rainbow (Thomas Yoseloff, New York, 1959).
18 B van der Pol and H. Bremmer, Phil. Mag. 24, 141, 825 (1937).
17 . I. Rubinow, Ann. Phys. (N.Y.) 14, 305 (1961).

18 H. Bucerius, Optik 1, 188 (1946).
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the Airy function agrees with that given in Ref. 17,
Eq. (68), except for the sign. The argument of the
Airy function is incorrectly given in Ref. 17, but the
correct value appears in Ref. 7.

According to Van de Hulst (Ref. 7, pp. 246-249),
Airy’s approximation is a useful quantitative theory
only for 8 > 5000 and [¢| < 0.5° ~ 0.01r; Huygens’s
principle may still be applied for g > 2000, but “a
quantitative theory of the rainbow for the entire gap
30 < B < 2000 is lacking.”

As we have seen, the result of the present theory,
contained in the uniform asymptotic expansion (4.34),
is valid even for large deviations from the rainbow
angle, matching smoothly with the results obtained
within the domain of validity of the saddle-point
method. While it remains to be seen whether it can be
applied to values of f as low as 30, values a few times
bigger should be accessible. Thus, a considerable
portion of the gap appears to be bridged.

In order to estimate the accuracy of Airy’s approx-
imation, let us consider the domain (4.39), where
(4.35) is valid. The main contributions to the total
scattering amplitude in this domain arise from the
direct-reflection term I, (4.35), and from the rainbow
term (4.35), which is dominant, due to the enhance-
ment factor f¥. A numerical computation of the
coefficients, taking N = 1.33, yields

f(B,0r + ¢) ~ —0.0786
x exp (—1.86i) — 0.438¢=7/42p)?
x exp [iB(3.038 + 0.862¢ — 0.230¢%)]
x {Ai[—0.36928)(1 + 0.202¢)]
— 0.688i(28)~*
x Al [—0.36928) (1 + 0.202¢)]}
(N = 1.33). (4.43)

If only the rainbow term is taken into account, the
minima and maxima of the intensity still occur at the
zeros of the Airy function and its derivative, respec-
tively. Their angular positions are shifted with respect
to Airy’s theory by amounts proportional to Be
[cf. (4.35)]. The corrections to the intensity also in-
volve the term C in (4.35), which is again of order e.
Both corrections can attain several percent within the
domain (4.39).

For # of the order of a few hundred, the correction
term involving the derivative of the Airy function
becomes of the same order of magnitude as the direct
reflection term, so that interference with the first term
in (4.43) must be taken into account. The correction
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term # to the phase of the rainbow term (4.35) will
then also play a role.

In conclusion, within the domain (4.39), the cor-
rections to Airy’s theory can attain several percent;
their value increases with the deviation from the
rainbow angle.

S. THEORY OF THE GLORY
A. Introduction

The last region that remains to be treated is the
neighborhood of the backward direction,

f=nm—¢ 0<ex<pt (5.1)

This is the region where the glory is observed.

The glory is a strong enhancement in near-backward
scattering by very small water droplets, with values of
B ranging up to a few hundred. As a meteorological
effect,!® it appears when an observer stands on a high
point (mountain summit), looking at his own shadow
prjoected on nearby thin clouds or mist (i.e., 180°
away from the sun). Under favorable conditions, he
sees the shadow of his head surrounded by a bright
halo, sometimes accompanied by several colored
rings. A color picture of the glory has recently been
published.’® The glory is also frequently observed
from airplanes (around the shadow of the plane).
When several observers stand together, each one sees
the glory only around the shadow of his own head,
and not those of his companions, indicating that the
effect is concentrated within a very smail solid angle
around 180°, corresponding to a narrow peak in the
back-scattered intensity. [This remarkable effect was
noticed already in the first recorded observations,
made in 1735 by a Spanish captain, Antonio de Ulloa,
from a mountain top in the Andes, in the course of a
scientific expedition to Peru.'®] The average value of
for which the observations have been made is of the
order of 160, corresponding to water droplets with
0.028 mm average diameter (Ref. 7, p. 258).

A discussion of various attempts that have been made
to explain the glory has been given by Van de Hulst
(Refs. 6 and 7, p. 249). Although the first recorded
observation was made more than two centuries ago,
no satisfactory quantitative treatment has ever been
given. The main facts that have to be explained may be
classified as follows (cf. Ref. 7, p. 255):

(a) The anomalously large intensity near the back-
ward direction for values of 8 ranging up to a few

1% (a) J. M. Pernter and F. M. Exner, Meteorologische Optik
(W. Braumiiller, Vienna, 1910); (b) J. C. Brandt, Publ. Astron. Soc.
Pacific 80, 25 (1968).
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hundred, as well as the fact that the phenomenon is no
longer observed for larger water droplets (e.g., for
B~ 10%).

(b) The angular distribution. With (5.1), if we
denote by ¢, the angular radius of the jth dark ring
(as it would be observed in yellow light), we have,
roughly (Ref. 7, p. 257),

0.35 < /e, < 045; 1.6 < e5/e, < 1.7, (5.2)

The first dark ring is apparently rather hazy. We have
e = 0(87,

which is a measure of the narrowness of the backward
peak.

The ratios (5.2) differ from those found in ordinary
diffraction coronae, which correspond to the forward
diffraction peak. The outer rings in the glory are also
much more pronounced, i.e., the intensity decreases
more slowly as we move away from the center, This
disposes of an early theory according to which the
glory would be a diffraction corona for light reflected
from the clouds; it is undoubtedly contained in the
back-scattered intensity from individual water drop-
lets.

(c) The polarization: although few systematic data
exist, there are indications that the glory is strongly
pclarized.

(d) Variability: the character of the rings (radius,
brightness, etc.) frequently changes with time, even
during a single observation.

Ultimately, the crucial test of a theory lies in how
accurately it can reproduce the *‘exact” results,
obtained by numerical summation of the partial-
wave expansion. For the scalar problem, there do not
seem to be many numerical results available. In the
electromagnetic case, however, there exist several
pumerical calculations of the intensity at or near
180°. Most relevant to the present problem are those
of Walter?® and Bryant and Cox.®

The latter are particularly valuable, because the
intensity at 180° was computed as a function of g, at
intervals of 0.005, near g = 200 and § = 500. The
results show a lot of fine structure that does not appear
in other calculations. Specifically,

(¢) Superimposed on a more slowly-varying back-
ground, the back-scattered intensity shows a rapidly-
varying, quasiperiodic pattern. The period Af found
for these fluctuations is given by

(5.3)

0.81 < Ap < 0.82. 5.4

20 H, Walter, Optik 16, 401 (1959)
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(f) Within a single period, a few irregular peaks of
varying heights and widths are found; the width
ranges from ~0.01 to ~0.1 and the intensity can
change by a factor of ~100 (Ref. 8, Fig. 2), corre-
sponding to enormous spikes.

Bryant and Cox also plotted on the same curve the
intensity at 90° and the total cross section (Ref. 8,
Fig. 2). They found that

(g) The total cross section also shows fluctuations
with very similar character and the same period as the
back-scattered intensity, but with greatly reduced
magnitude, corresponding to changes of the order of
one percent. At 90°, intermediate-size fluctuations are
seen, but the period is twice that given by (5.4).

Except for the polarization, it is to be expected that
most of the above features also appear in the scalar
case. Thus, we shall investigate to what extent they
are present here, although it must be stressed that an
entirely adequate confrontation can only be made
with the results obtained in the case of electromagnetic
scattering.!!

We shall see that, apart from the polarization
effects, all the other features are indeed present and
can be explained by the theory. However, for an
explanation of the detailed structure of the intensity
[(®) to (g)], higher-order terms in the Debye series have
to be taken into account. Their effect is discussed in
Sec. 6.

B. The Geometrical-Optic Contribution

The decomposition (3.10) made in the 2-ray region,

(B, 7)) =f2,g(;3’ 7)) +f2,res(ﬁa 0) +f§.res(ﬂ, 0),

is still valid in the domain (5.1), provided that we
rewrite (3.11) in the form

(5.9

f2.0(B, 6) = é f dmpUPl_g(—cos 0)e'"* tan (mwA)A dA.
(5.6)

This result is obtained by taking the path of integration
in (3.11) to be symmetric about the origin, then split-
ting it at the origin, making 4 — —2 in the lower half
and employing the identity

0324(cos 6) — ¢¥74Q") y(cos 6)
= —e"* tan (7A)P,_3(—cos ), (5.7)

which follows from N, Eq. (C6). The expressions
(3.12), (3.13) for the residue-series contributions to
(5.5) can be employed up to 6 = =, and so can (5.6).

Let us consider first the “geometrical-optic” term
Ja.0(B, ). Strictly speaking, this name is not entirely
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appropriate, because geometrical optics would predict
infinite intensity in the backward direction (which
corresponds to a focal line). However, in view of the
fact that in previous cases the saddle-point contri-
butions were found to correspond to the geometrical-
optic approximation, the same name will be applied
here. As 6 — =, the saddle point 4 in (3.11) tends to
the origin [cf. (3.2)]. This corresponds to the central
ray, 6, = 0, = 0, which is transmitted through the
sphere and then reflected backwards. Thus, we expect
that the main contribution to (5.6) will arise from the
neighborhood of 2 = 0, or, more precisely, from the
domain

1Al < B4, (5.8)

which corresponds to the range of the saddle point.’®
[There is a misprint in the corresponding formula N,
Eq. (9.48), which should read exactly like (5.8)].

We can therefore evaluate (5.6) by a method simi-
lar to that described in N, Sec. IX.C. We expand the
integrand in powers of A/8, keeping all correction
terms up to O(4-1), and making use of the asymptotic
expansion N, Eq. (C9) for P,_,(—cos 0).

With the change of variable

3
A=t (%\7) x ={x, (5.9
the result is
fo.lBsm— €
_ 4iN*(N — 1)

i(2—N):|G01_i(N2—4N+1)G

% [1 T 4Ng INQ-N)B
i(N® —2) . g €
A Y 6 s
12NQ2 — N2 ° Ty

x [Ssin Gy — Gy + =20\ 105y,
3 2 . €
4 sin 5

(5.10)
where

Gl © = "exp (=9
X J, (2§x sin ;) tan (7{x)x™ dx. (5.11)

Evaluating these integrals by the technique de-
veloped in N, Appendix F, we find the following
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final result:
f2.y(ﬂ’ ™= 6)
__ NN D)
Q2= NN+ 1Y
. B _ iNpe®
X exp [2i2N — 1)f] exp [ 42 — N)]
i i(2N® — 10N% 4+ 17N — 8)
2NQ2 — N)*B
_ (N4 D IN(NY = 2Bt o,
52— Ny me—ny ¢ )}

(0 <ex . (512

It can be verified that (5.12) coincides with the ex-
pansion of (3.15)-(3.16) in powers of €2, within the
domain under consideration. Thus, (3.15)-(3.16) are
uniformly valid up to 6 = =.

No geometrical-optic rays other than the central
one contribute to the second term of the Debye
expansion in this region. As shown in Fig. 3(c), such
rays can appear near the backward direction only for
N> 2. (They are sometimes called “glory rays,”
but the corresponding effect should not be confused
with the one under consideration.) Thus, the total
scattering amplitude near the backward direction, in
the geometrical-optic approximation, is given by

fg(ﬂ’ = e) =ﬁl,ﬂ(ﬂ’ T = E) +f2,g(ﬂ’ T — €)
+fp>2,g(ﬂ’77 - E)7

where f, (B, m — €) is given by I, (4.52), f; ,(B, m — €)
by (5.12), and f,_, (B, ™ — €) represents the total
geometrical-optic contribution from higher-order
terms in the Debye expansion. It corresponds essen-
tially to the central-ray contributions after multiple
internal reflections within the sphere, and may
therefore be anticipated to be much smaller than the
remaining two terms in (5.13). This is confirmed in
Sec. 6B by explicit computation.

In particular, for N = 133, g = 130, which is
close to the average value for which the glory is ob-
served, the total contribution from the first two terms
of (5.13) at 6 = = is found to be

(5.13)

f0.0(130, 7) + £ (130, m) ~ 0.101 + 0.176i
(N =133). (5.14)

The “exact” scattering amplitude corresponding to
these values can be computed from its partial-wave
expansion I, (2.1), with the help of partial-wave
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tables®! (the term / = 0 has to be separately added).
The result is

f(130, ) ~ —0.0104 4 0.798i (N = 1.33). (5.15)

Comparing (5.14) with (5.15), we see that it not only
has the wrong phase, but also accounts only for about
7% of the total intensity! As has already been men-
tioned (cf. Sec. 6B), higher-order geometrical-optic
contributions are negligible. The angular distribution
and f-dependence of (5.13) are also entirely different
from those found in the glory.

We conclude that geometrical optics accounts only
for a small fraction of the total intensity near the
backward direction (in the relevant range of values of
$) and is completely unable to explain the glory.
The attempt by Ray?? to explain the glory by means
of diffraction of light rays reflected near the backward
direction is thus seen to be incorrect. The same applies
to a discussion by Bricard.?

C. Qualitative Discussion

Since the glory is not due to geometrical-optic
contributions, it must arise from residue-series contri-
butions. Thus, it must correspond to a case of strong
“Regge-pole dominance” of the scattering amplitude.
Heretofore, we have found such cases only in shadow
regions (where the amplitude would vanish in the
geometrical-optic approximation). This is the first
example of such dominance in a lit region.

Physically, this implies that the glory is due to
surface waves. This was first suggested by Van de
Hulst (Refs. 6; 7, p. 373), who conjectured that
diffracted rays taking two shortcuts across the sphere,
i.e., of the type shown in Fig. 7, are responsible for the
glory.

For N = 1.33, the total angle = — 6, that must be
described by the surface waves before emerging in the
backward direction [cf. Fig. 7(a), (b)], is approxi-
mately 15°. The question then is whether the expo-
nential damping of the surface waves along this arc
would not prevent them from making an appreciable
contribution. This quantitative problem was not
treated by Van de Hulst.

There are two qualitative pieces of evidence that
tend to support the general correctness of Van de
Hulst’s conjecture. One of them is Bryant and Cox’s

2 R. O. Gumprecht and C. M. Sliepcevich, Tables of Light
Scattering Functions for Spherical Particles (University of Michigan
Press, Ann Arbor, 1951).

32 B, Ray, Proc. Ind. Assoc. Cultiv. Sci. 8, 23 (1923); Nature 111,
83 (1923).

3 J, Bricard, in Handbuch der Physik (Springer-Verlag, Berlin,
1957), Bd. XLVIII, p. 351.
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numerical study® of partial sums of the Mie series as
a function of the number of partial waves retained.
They found that, at 6 = 180°, by far the most im-
portant contribution to the surn arises from the edge
domain I, (1.14), which, as we know, corresponds to
nearly-grazing incident rays.

The other piece of evidence is experimental. It has
been shown by Fahlen and Bryant? that the circum-
ference of a water droplet, viewed at 180° with respect
to the illuminating beam, appears like a thin luminous
line. The explanation of this effect is that the surface
of the droplet is a caustic of diffracted rays. Just as in
the well-known phenomenon of the luminosity of a
diffracting edge as seen from the shadow,? the eye
(or the photographic plate) performs an inadmissible
extrapolation. From the behavior at finite distances,
it is inferred that the circumference of the droplet
is an actual light source, whereas the true intensity
there is, of course, finite. Thus, Fahlen and Bryant’s
observation provides direct experimental evidence for
the existence of intense surface-wave contributions
along the backward direction.

Both the above pieces of evidence strongly support
the inference that surface waves are responsible for the
dominant contribution to the glory. This is not
necessarily equivalent to Van de Hulst’s conjecture,
which proposed a specific model for the surface-wave
contributions, namely, diffracted rays of the type
shown in Fig. 7. We shall sec that, while these rays
indeed give a significant contribution, surface-wave
contributions from higher-order terms in the Debye
expansion also play an important role.

The present treatment enables us to make a quanti-
tative evaluation of the Van de Hulst-type surface-
wave contribution. It corresponds to f, (8, 7 — €)
and is given by (3.18)-(3.21). Before performing a
numerical evaluation, however, let us give a qualita-
tive discussion of the behavior of the amplitude up to
the third term in the Debye expansion. To this order,
we have

f(ﬂs "~ e) Nfo,a(ﬁ’ m €) +f2,a(.39 m = €)
+f‘.z.res(ﬁ’ T = E)’

where the first two terms are the same as in (5.13) (the
remaining contributions up to this order may be
neglected).

For sufficiently large # and ¢ 3> 71, the third term
is approximately given by (3.22). In the domain under
consideration, € < %, the asymptotic expansion N,

(5.16)

2¢ T. 8. Fahlen and H. C. Bryant, J. Opt. Soc. Am. 56, 1635 (1966).
25 A. Sommerfeld, Optics (Academic Press Inc., New York, 1954),
p- 262.
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(C11) for P;_y(—cos 6), employed in the derivation
of (3.22), is no longer valid and must be replaced by
N, (C9). With this replacement and neglecting correc-
tion terms QO(S-") in I, (4.52) and (5.12), we find that
(5.16) becomes

fBr—on~ — %(Z_“;i)

. 4N? .
X exp (-—21,5)[1 + m exp (41Nﬁ)}

ir/3

+ 25— exp (4iMB)(m — 0p)(m — Oz, + M)J(Be)
yM

X 3 (@)™ exp [i2,(m — )]

0<Le< ™.
(5.17)

In the residue series, we have neglected all terms
beyond m =0 [cf. (3.22)], which correspond to
surface waves making more than one turn around the
sphere, since such contributions are extremely small.

It must be emphasized that the expression for
Joxes(B, ™ — €) in (5.17), where only the lowest-order
term in each asymptotic expansion has been kept, is
certainly not a good approximation for S~ 102
Many more terms would have to be included in the
evaluation of the residues, as will be seen in Sec. 5D.
However, our present purpose is to make a rough
estimate of the order of magnitude of this term and of
its qualitative behavior as a function of f# and e. For
this purpose, the simple expression given in (5.17)
is entirely adequate.

Taking N = 1.33 and employing the asymptotic
expansions for the poles given in I, Appendix A,
(5.17) becomes

f(ﬂ, T —€)
~ —0.0708 exp (—2iB)[1 + 1.95 exp (5.32iB)]

+ 1.69 exp (3.77i/3 + 02438t + l%)

x Jo(Be)B* exp (—0.4215%)
x {1 4 0.762 exp [(—0.315 + 0.182i)8%]
+ 0.657 exp [(—0.574 4+ 0.331)] 4+ - - -}, (5.18)

where, within the curly brackets, we have taken into
account only the contributions from the first three
poles. Now let us compare the behavior of (5.18) as
a function of § and e with some of the features (a)-(g)
of the glory, described in Sec. 5A.

(a) The ratio of the residue-series contribution to
the geometrical-optic contribution to the amplitude
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is of the order of

Ifz,res(ﬂ’ ™ E)/.f;l(ﬂ’ T €)|
~ 158t exp (—0.4p%). (5.19)

This is of order 10 for # ~ 10* and of order unity for
g~ 105

Thus, in the domain where the glory is observed,
the residue series is indeed the dominant term in the
amplitude, and its order of magnitude is just right to
account for the discrepancy between (5.14) and (5.15).

The physical factor that enhances the surface-wave
contribution is their focusing along the axis, analogous
to the Poisson spot: a whole cone of diffracted rays
come together, rather than just two. This is responsible
for the change from a factor 8% in (3.22) to a factor
% in (5.17); the amplification factor due to focusing
is of order p? [cf. also N, (5.11)].

On the other hand, the damping coefficient in the
attenuation factor of the surface waves also increases
like %, so that, for large enough f# (a few times 10%),
the geometrical-optic contribution becomes dominant.
Together with the increasing smallness of the solid
angle defined by (5.3), this explains why the glory is
not observed for larger water droplets.

(b) Within the domain of values of § where the
glory is observed, the angular distribution is deter-
mined by the dominant term in (5.18), namely,

i(B, m — €) o JG(Be),

where i denotes the intensity.

The above angular distribution also follows directly
from the fact that the dominant contribution to the
glory arises from partial waves in the edge domain
[cf. 1, (1.14)]:

(5.20)

L~B—cft <l<l ~p+cf, (521

corresponding to nearly-grazing incident rays. In fact,
for such values of /, N, (C9), yields

Pilcos (r — €)] &~ Jy(Be). (5.22)

Similar considerations have been made by Van de

Hulst (Refs. 6; 7, p. 253), who also observed that

(5.20) would explain the slow intensity decrease at

large angles, in contrast with ordinary diffraction
coronae, for which

i(0) oc JI(BO)/(BO)’. (5.23)

In the former case, i decreases like (8¢)~1; in the latter,

like (56)3.
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The ratios of dark-ring radii according to (5.20) are
given by the ratios of zeros of J,(x):

€, ~ 044, €5le, &~ 1.6. (5.24)
These results are compatible with (5.2), and (5.3) is
also verified, although the comparison is not too
significant, because we are considering a scalar theory.
For the same reason we cannot discuss feature (c).

(d) The observed variability of the glory pattern
must be related to the variability of the average radius
and the dispersion in the radii of water droplets in thin
clouds or mist, and their evolution as a function of
time. It is an indication that the back-scattered
intensity is extremely sensitive to small variations in
the parameter . Thus, it is a consequence of feature
(f), and it should be explained together with this
feature.

In order to compare (5.18) with features (e)-(g),
we have to consider its detailed behavior as a function
of B, in the range 102 < f < 10%, and within a small
interval of variation of 5,

B =P8+ 0p, [0p| <1,

It follows that

16B1/B, < 1. (5.25)

gt~ (5.26)

may actually be replaced by 3 in (5.18).
Thus, (5.18) may be rewritten as

f(By + 0B, ™ — € ~ A[l + Bexp (—0.45i6)
+ Cexp (—5.77i0p)], |B] <}, |C| <%
(10% < By < 105, 108] < 1), (5.27)

where A, B, and C are complex parameters depending
on f,, which remain approximately constant within
the above interval 68. The first term within the square
brackets arises from the dominant term f, ., in (5.16),
the second one from f; , and the third one from f; ,.

It is clear that (5.27) cannot explain features (e)-(g).
Instead of a quasiperiodic pattern, with period given
by (5.4), and rapid intensity variations, by factors of
up to 100, (5.27) describes two much less prominent
modulations, resulting from the interference between
geometrical-optic and surface-wave contributions.
The largest modulation corresponds to a much
greater period (~14) and a much smaller intensity
variation (by less than a factor of 4).

While (5.17) is only a rough approximation for
f ~ 102, the more exact evaluation of the residue
series that will now be undertaken cannot account for

‘H. M. NUSSENZVEIG

the discrepancy between (5.27) and features (e)-(g).
Thus, these features must arise from the interference
with surface-wave contributions to higher-order
terms in the Debye expansion. It will be shown in Sec.
6D that this is indeed the correct explanation.

D. The Residue-Series Contribution

For a more accurate evaluation of the residue-series
contribution f, .., we start from the exact expressions
(3.18)~(3.20). We have to compute the terms appear-
ing in (3.21).

The partial derivatives d, d, and 4 in (3.21) can be
computed with the help of I, (A25)-(A27), (for the
terms involving [1 g]) and I, (A23) (for the terms in-
volving [2 «]). The Hankel functions and their deriva-
tives can be computed by means of I, (A11)-(A20).

By taking the logarithmic derivative of (3.20) with
respect to 4, we find

b 1. Y@ HY@
P R AT ST
_5 HP@B [ [l = N[l'a] | P,_y(—cosb)
HYPB)  [1pl— N[la] P, 3(—cosb)’

(5.28)
and, differentiating once more with respect to 4,

%: _ (C_m) _ zl + p{HP (@)} — 3p{HP(2)}

m.

= 29{HP(B)} + »{[1 f] — N1 o]}

+ p{P,_g(—cos O)}, (5.29)
where we have introduced the notation
AN
M =< — [=]). 5.30
v =2 ( f) (5.30)

In order to evaluate (3.20) and (5.28)-(5.29), we
again employ the expansions given in I, Appendix A
for H(B), [1 B] and their derivatives, the expansion
N, (A16) for H{?(«) and their derivatives (thus, [I «]
is given by I, (A23) with i — —i) and the expansion N,
(C11) for P,_y(—cos 6).

The numerical evaluation of f, . (B, 0) has been
carried out at the point § = 130, 60 = #, for N = 1.33.
The first neglected term in all asymptotic expansions
employed was O(f~2), and contributions from the
first five poles 4, were taken into account. The result
is given by

fores(130, m) & —0.165 + 0.483i (N = 1.33).
(5.31)



SCATTERING BY A TRANSPARENT SPHERE. II

Comparing this with (5.14), we see that f, ... is
indeed dominant over the geometrical-optic contri-
bution. The order of magnitude of (5.31) (but not the
numerical value!) also agrees with the estimates made
with the help of (5.18).

Adding (5.31) to (5.14), we find

Jo.,(130, m) + £, (130, m) + f; 15(130, 7)

~ —0.064 + 0.659 (N =1.33). (5.32)

Comparing this with the exact result (5.15), we see
that f, .., corrects the phase in the right direction and
leads to a value for |f| of about 859 of the exact
value (709 for the intensity). The remainder of the
discrepancy must be accounted for by contributions
from higher-order terms in the Debye expansion. The
discussion given in Sec. 6 leads us to expect that, for
other values of §, higher-order terms in the Debye
expansion may account for a larger fraction of the
intensity, and the relatively good agreement between
(5.32) and (5.15) may be somewhat fortuitous. This
should be checked by extending the computation to
other values of j.

In conclusion, we see that Van de Hulst-type surface
waves indeed give rise to an important contribution to
the glory, but we must still investigate the effect of
higher-order terms,

6. HIGHER-ORDER TERMS
A. Introduction

So far we have discussed only the first three terms
in the Debye expansion I, (3.21). With regard to the
remaining terms, the following questions may be
asked: (i) Can they be evaluated by similar procedures ?
(ii) Do they give a significant contribution? (iii) Do
they give rise to any new physical effects ?

The answer to (i) is clearly affirmative. The higher
the order of a term in the Debye expansion, the larger
will be the number of associated saddle points and the
number of regions to be treated. However, the tech-
niques for the evaluation of higher-order terms are
essentially the same as those developed for the first
three terms, with only slight extensions required.

For N = 1.33, as has already been mentioned (I,
Sec. 3C), more than 98.5% of the total intensity is
contained in the first three terms. For higher values of
N, geometrical-optic contributions decrease less
rapidly with the order, because the internal reflection
coefficient increases. However, the amplitude of the
direct-reflection term also increases and the transmitted
contribution becomes relatively less important, Thus,
the first three terms probably suffice for most applica-
tions.
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In the neighborhood of some special directions,
higher-order terms can give appreciable contributions.
Thus, for N = 1.33, the secondary rainbow (around
6 = 128.7°), though much fainter than the primary
one, still has noticeable intensity. It can be treated by
exactly the same method as the primary rainbow
(Sec. 4A). We have also found indications that higher-
order residue-series contributions may be important
in the glory (Sec. 5C). We shall see that they give rise
to the rapid fluctuations in intensity mentioned in Sec.
5A, and that this effect occurs in all directions, al-
though the amplitude of the fluctuations is largest near
the backward direction.

We shall confine our attention almost entirely to
the backward and forward directions. The results are
not limited to the range 1 < N < V2. However, the
cases N > 1 and N < 1 still require separate treat-
ments.

B. Higher-Order Geometrical-Optic Contributions to
f(B,0) and f(8, =)

The (p + 1)th term of the Debye expansion is given
by I, (3.23) and I, (3.26). With the help of the reflec-
tion properties (2.2), as well as the identity I, (2.12),
these representations may be rewritten in-different
ways, depending on whether p is even or odd:

f2j(/35 6)

= (=1 ; 3 (-

Xf Up2j’1P,1_%(cos 6)e2i(m+j)7r)% di

AdA
—_ _1 41 _ irA 29—1P c 6
(=D 2/3 i U(e™p)*"P;_g(cos 0) cos ()
W—i€ },dﬂ.
= (—1) zm 2-1p i (cos O :
( ) 2ﬁf o0 —1€ P) ).~§( o8 )COS (772.)
6.1
Jaina(B, 0)
__1 i+l
e
xf U(e"”‘p)“Pl_%(-—cos e)ei(2m+1)7rl}l daa
(_1)j+1foo'ze s dﬂ.
= il p)2ip 0
28 J-sie U™ p) Py cos )cos (m4)
(_1)jfw_ie ird _\27 Ada
= U P, _3(—cosf . (6.2
2 Jewo—ic (¢7°p)"P;-4(—cos )cos (md) (62
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By procedures similar to those employed in (2.4)-
(2.12), these results can also be written in the form

Sei(By 0) = f25,0(B, 6) + f2;,.(B, 0), (6.3)
fza‘+1(ﬂ, B) =f29'+1,0(/3: 6) +f27‘+1,'r(:3s 6), (6.4)
where
(=17 7% ina 2ot
24,7 6 ’
furp,0 = [ 06 y
—iTA —
X e P, _y(—cos 0) w05 (e)’ 6.5)
Jairi(B, 6) = ( 21;} _w—-KU(eiﬂP)gj
X e'™P,_j(cos 0) ———?}j—) (6.6)
a8, 0) = (=1 [ vt

X e-’“Q%(cos 6) A dA
= (=1 ‘é f U(eiﬂlp)Za'—l
0

x P;_j(—cosO) tan (md) Add,  (6.7)

04-7€

Seriro(B: 0) = (—1) /13 f U(e'"*p)*Q ?4(cos 0) AdA

—o0—1i€

=(— 1)a+1 lf U(e“"p)”

X P,_j(cos 6) tan (72) A dA. (6.8)

Note that (2.6)-(2.12) are particular cases of these
results.

If we take f,;, at 6 = = and f,, , , at 6 = 0, the
corresponding integrals (6.7), (6.8) have a saddle
point at A = 0. For N < 2jand N < 2j + 1, respec-
tively, the corresponding steepest-descent path makes
an angle of 7/4 with the positive A-axis. The integrand
differs from that of (2.12) only by powers of ei"%p, so
that, according to Fig. 1 and I, Fig. 21, the path of
integration can be deformed into the steepest-descent
path.

Neglecting corrections of order -, we can employ
the approximations

tan (7)) ~ i, (6.9)

4N iA2
~ (N — D=2 (N — 1),
UG~ o e [2:(N DB~ oY )]
(6.10)

ird (N 1) l}.2
TA0(A, A 2iN , (6.11
et p(4, B) (N+)CXP(1;3+ ﬂ) 6.11)

valid near the saddle point.

NUSSENZVEIG

The evaluation of the saddle-point contribution
finally yields

2

TuBm) = = 1exp (~2if)
x —Z— L+ 0], (6.12)
(- ")
2
Thnalf,0) = N’j’r [ %P LAV = 1)
27 N
% ——-——-—[j - (N — 1)] [1+ 0™, (6.13)
2
where
z = (Z 7 i) exp (4iNB). (6.14)

Note that (5.12) and I, (5.48) are particular cases of
these results.

The superscript (c) in (6.12) and (6.13) is to indicate
that they represent contributions corresponding to the
centrally incident ray in geometrical optics. The param-
eter z is identical to that which appears in the theory
of the Fabry—Perot interferometer (Ref. 25, p. 47),
representing the amplitude and phase change for
double traversal of the sphere diameter. In general
there may be other geometrical-optic contributions to
the amplitude at § = 0 or =, arising from incident
rays with nonzero impact parameters.

The total geometrical-optic contribution from cen-
tral rays to the scattering amplitude at § = » and
6 = 0 from higher-order terms in the Debye expansion
is given by

1By m) = 2 £ o8, ™
2
= — NzN_ . exp (—2if)
N 2z -
o) - 25l o
(6.15)
2.8, 0) = % Fh10B, 0)
2
= T o BV — 7]

x w(z,N = ‘) [L+ 0] (6.16)
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where
=
¢(z, ) = 2(—7 (2 < 1,25 1,2,3,+ ).
=1 —
(6.17)
This function is related to Lerch’s transcendent?é
q) s, _ 0 Zn
(@ 5, ) nz=:o (n+ o)
(lzl < ]a o F# Oa —19 _21 o .) (618)
by
p(z, ) = O(z,1, -2) + A (6.19)

For N = 1.33, we have |z] ~ 0.02, so that (6.15)
is a very small correction. For instance,

f;c>)2,u(]30’ 77) ~

is to be compared with (5.14). As mentioned in Sec.
5B, the correction is negligible.

—0.0007 + 0.0001i, (6.20)

C. Higher-Order Residue-Series Contributions to
f(B, =) for N> 1

The residue-series contribution at the poles 1, to
f,(B, ) is of the form

_ g
B ,BmEO(

X Y residue [AUp? 1 ®m7d, |
(6.21)

So.xesBs )

where r and s are integers related to p, that have to be
determined by detailed study of the deformation of the
path of integration in (6.2), (6.5) near 6 = =. Accord-
ing to (3.12) and 1, (5.7), we have

r=s=1 for p=1,

p=2 (622

We shall evaluate only the dominant high-frequency
contribution to (6.21). Thus, we restrict ourselves to
the term m = 0 and we keep only the lowest-order
term in each asymptotic expansion. The result, like
(5.17), is certainly not a good approximation for
p ~ 102, although it does yield the right order of
magnitude. However, it is adequate for a qualitative
discussion of the effects due to higher-order terms.
For an accurate numerical computation, techniques
similar to those employed in Sec. 5D would be required.

28 ' W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and
Theorems for the Special Functions of Mathematical Physics
(Springer-Verlag, Berlin, 1966), 3rd ed., p. 32.
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Substituting U(4, §) and p(4, §) by their explicit
expressions, we find [cf. (3.18)-(3.20)]

FosedB ™) & (— 170 % S Faps  (6.23)
where
(WP

r,.p, = residue {——_[d(l, /3)]”“}1,.’ (6.24)
}'eisrl[Hg'l)(a)]p-l B
(A B) = 18] — N1 a])*,

P = g pa@@pn A~ VD
(6.25)

and d(4, ) is given by (3.19).

The evaluation of the dominant term in r, , is
carried out in Appendix C. Substituting the result,
given by (C26), in (6.23), we get

fm.res(ﬂ’ )

~ it E

oo ()

X g(a;)"2 exp (i2.L,)[1 + 0(¥%)], (6.26)

where L{-V is a generalized Laguerre polynomial,
defined by (C24), and M and {, are defined by (2.38)
and (C19), respectively. The value of the integers in
(6.21) and (C19) is determined by the requirement
that {, corresponds to an angle between 0 and 2w,
{,=m—pb,(mod2m), 0L, <2n (627
In particular, for p = 1 and p = 2, it follows from
(6.22) that (6.26) is in agreement with I, (5.20), and
with the extension of (3.46) to 6 = 7. Similarly to I,
(5.24), and to (3.24), the above result can also be
rewritten as follows [cf. (C24)}:

FosedBs m) ~ "4 2mp)t exp ["P (2M’3 - %)]

X Y DDy Dy, [(Ru)”—l'g,,

€2

+(p— 1)(R11)p_2D12D21 21

@=DP—=2) 5 s 2 0
+ Y (R1)" (D12 Dyy) 31

+ oo+ (DpDy) C"}

x exp (i1,L)[1 + 9™, (6.28)
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(o) + (1)
¢ - & &G
* D"z D21 D12 D12 D21 RH fd‘ﬁfd:%
z2/!
/-
(e + (d) DfZe. 7 B

¢ 5 G L9,
2
* Dn2 D21 D12 (Dn Du)f"l‘f’« J‘i“?zfd“h
o [o] (o]
£, /3!

F1G. 10. Physical interpretation of (6.28) for p = 3. The four types of diagram that contribute in this case are shown, together with the
contribution from each type. The diffraction, transmission, or reflection coefficients at each vertex are indicated. The total angle described
along the surface is {3. There is a phase factor exp (3i6), where 6 = 2M§ is the optical phase difference associated with each “shortcut.”

where D? is given by (3.25), D, D;, by (3.26) and
R,y =1, as in (3.27). An equivalent result for a
cylinder was obtained by Chen [Ref. 9, Eq. (1.33)],
by applying the geometrical theory of diffraction.

The physical interpretation of (6.28) is a general-
ization of that given in Fig. 7 for p = 2. The terms
which arise for p = 3 are shown in Fig. 10. For
simplicity, this figure is drawn for a scattering angle
0 ¢ 7. Referring to this figure as an illustration, we
can describe the physical interpretation of each term
in (6.28).

As has been emphasized in I, Sec. 3A, the Debye
expansion corresponds to a description in terms of
surface interactions, and its pth term represents the
effect of (p + 1) interactions at the surface. For a
surface wave, one of them is its excitation at the point
T, (with diffraction coefficient D,) and final recon-
version into a tangentially emerging ray at E (again
with coefficient D,). Another one is the initial

critical refraction into the sphere at A (coefficient
D) and final reemergence at D (factor D,,). These
two interactions account for the common factor
D2 D,, Dy, in (6.28).

Once inside the sphere, there remain (p — 1)
interactions at the surface. Each of them can belong
to either one of two types [cf. Figs. 7(c), 7(d)]: (I),
internal reflection, with coefficient Ry;; (II), critical
refraction to the outside (coefficient D,,), followed by
traveling along an arc as a surface wave, and by a
new critical refraction into the sphere (coeflicient Dy,).
These two types of elementary interactions are
illustrated in Fig. 11. Each of them can be regarded as
a ““vertex,” provided that the path V'V” traveled along
the surface for a type-II vertex is separately taken into
account. The *“‘coupling constant” associated with a
type-1 vertex is R;;, and for a type-II vertex it is
Dy, D,,. With this interpretation, the terms of (6.28)
correspond to diagrams with (p — 1) “‘internal”
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(I) ﬁﬂ (H) Dn.D'zi
Fi1G. 11. The two possible types of elementary interactions of a diffracted ray at the surface (“vertices”) and the corresponding “coupling

constants.”

vertices, besides the two ‘“‘external” ones already
described above. An equivalent way to classify them
is that they are all associated with p shortcuts across
the sphere.

The simplest diagram with (p — 1) internal vertices
is one with (p — 1) type-I vertices [Fig. 10(a)].
Diagrams of this kind can have any value for the
angle ¢, between Q and {, so that they contribute

N t L
(Ru)p—lj; do, = (Ru)p*léqz,

which is the first term within square brackets in (6.28).

If we now substitute one type-I vertex in each
diagram of the above class by a type-II vertex, there
are (p — 1) different ways to do this [Figs. 10(b),
(c)], so that we get a contribution [cf. (3.29)]

~ Lp {r—01
(p — 1(Ry)" DDy f do, f de,

~ o £
=(p— 1)(R11)p 2D12Dz1 ‘2_1; s

which is the second term in (6.28).

Similarly, if we substitute two type-l vertices by
type-11 vertices, this can be done in (p — 1)(p — 2)
ways, but an interchange between the two type-1I
vertices leaves the result unchanged, so that this
class of diagrams [Fig. 10(d)] contributes

(11‘—2)—(%‘—2) (Ro)*(D1sDp)’

[ {o—e1 So—p1—p2
xf d%f d%f dys,
0 o 0

which is the third term in (6.28)—and so on.

The “propagator” between two vertices is either
exp (2iMp), the phase factor associated with a short-
cut, or exp (i,4$,), the damping factor for a surface
wave along the angle ¢,. Since there are p shortcuts
and the total angle described along the surface is £,

this leads to the factor exp (2ipMp) exp (i1, {,) in
(6.28). The factors exp (—in/2) represent the phase
delay associated with passage through the focal points
for diffracted rays at the poles.

It also follows from the above argument that, for
an angle 6 such that = — 6 p-}, the dominant
terms of the residue-series contribution at high fre-
quencies must be of the form

FoxesBs ) = frres(B, 0) + frresB: 0),  (6.29)

where
res(Bs 0)
= = exp QipMP)
= p
(sin 9)F
x 30" 3 DLDuDu] Ry T,

'+ 2
+ @ — (R DyyDy, %,l

il D
ot (Dlzbn)”—‘(%,i] exp (i, L2.)

o (m— 03, (630
where n__is an integer and

:rtn,m = Cf + 2mm, (6.31)

the angles {* being the minimum angles described by
surface waves excited at T, or T, (Fig. 7) before
emerging in the direction 6. In (6.30), waves making
any number of turns around the sphere have been
added, but usually only 7 = 0 needs to be taken into
account. The difference between the factors appearing
in (6.28) and (6.30) corresponds to the replacement
[cf. N, (C8)]

P,3(1) = 1— P, _3(—cos 0)
~ (2B sin 6)F

X {exp l:il(w - 0) — :417-]

+ exp [—iz(ﬂ —0)+ i-ﬂ}. (6.32)
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The extra factor A% in (6.28) is a measure of the focus-
ing effect along the axis. Note that (3.24) is a partic-
ular case of (6.29).

D. Higher-Order Effects in the Glory

In order to discuss the effect of the higher-order
contributions (6.26), the first question that must be
answered is: How many such contributions need to
be taken into account? The slow convergence of the
Debye expansion for residue-series contributions,
arising from the high internal reflection coefficient
(3.27), is apparent from (6.28).

Let us investigate the asymptotic behavior of (6.26)
for large p. The asymptotic behavior of L{1(—x) for
large p and fixed x is given by’

L(p‘-l)(_.x) =\/g e—m/z{h[z(px)i]
p

+ LR + } (6.33)
P

where 1,(z) is the modified Bessel function of order n.
In particular, if \/ px > 1, (6.33) becomes

i‘——wlz
LEV(~x) = 22 2poh[1 + 02
o () = it P B ][ * ((px)*)]

ot » 11 (6.34)

Under these conditions, (6.26) becomes

jTHLiT/3 1y 1
oo
2Am*y \M

X exp [2% (%{9)% + ip (2M/3 - g):l

x 3 (@) exp [z‘(z,, + j) z,,]

X (1400 (LMD 1] (635

It would appear from this result that |f, .| is
unbounded as p — oo. However, it must be remem-
bered that (6.26) is the dominant term in an asymp-
totic expansion for fixed p and sufficiently large S,
whereas we are now interested in the asymptotic
behavior for fixed f and increasingly large p. Since
the number of correction terms [indicated in (6.26)
as O(y?)] also increases with p, (6.26) eventually no

fp,ren(ﬂ’ 1.r) g

27 The Bateman Manuscript Project: Higher Transcendental Func-
tions, Vol. 11, A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G.

Tricomi, Eds. (McGraw-Hill Book Co., Inc., New York, 1953),

p. 199.
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longer represents the dominant term for sufficiently
large p: It is modified by the accumulated effect of a
large number of correction terms (e.g., y~% terms,
each of order y?).

We shall now give a heuristic argument to show that
the resuitant effect due to correction terms must be to
bring about an exponential damping factor for large
p- To see this, let us go back to the discussion of the
rate of convergence of the Debye expansion in I, Sec.
3A. In terms of the partial-wave series, the Debye
expansion I, (3.21) can be rewritten as follows:

S8 m) = 5B = = 2 5. (1Y + DUS ir ™

(6.36)
where

U@B)=Ul+14,8), pB=pl+14p). (637)

According to the discussion given in Sec. 5C, the
residue-series contributions are associated with partial
waves in the edge domain [cf. I, (1.14)], so that, at
least in order of magnitude, we can identify

it

(=D + DU, (6.38)

=l

i
fp,rcs(ﬂa 77) ﬂ .

where /_ and /, are given by (5.21). Thus, the rate of
convergence of the Debye expansion for the residue-
series contributions is determined by the magnitude
of the spherical reflection coefficient {p,| in the edge
domain (5.21).

It follows from I, (3.15) and 1, (3.8)~(3.11), that

x |HSBH @M Bl — N2aD)| ™2 (6.39)

Substituting the Hankel functions and their logarithmic
derivatives by the corresponding asymptotic expan-
sions in the edge domain (I, Appendix A), we finally
get [cf. 1, (4.58)]

o~ 1~ L jAi (=2 = 1~ 26,

(<1< 1), (6.40)
where
2=+ § - B),
so that {z;] = O(1) in the edge domain.
On the other hand, it follows from I, (3.24), 1, (3.5)-
(3.8), and I, Appendix A, that

(6.41)

(U] = [Ty Tial ~ ;% (A (=2

(_<1<1). (642)
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Substituting these results in the remainder after P
terms of (6.38), we find

< b4 & . —2 IPz'P
2 fp,l’('s(ﬁ, 77) ’g z lAl (_Zl)l
p=Pr1 M =i 1 — py

2 , L _p
N;’élp,(’ ~ 2cB457, (6.43)

where
(6.44)

is an average value of p, in the edge domain, and ¢
is defined by (5.21).
Finally, (6.43) becomes, for large enough P,

§ fm,roa(ﬂs m) | < ZCﬂé(l —_ E)P ~ zcﬁ'&‘e—fl’

p=F+1

~ 2cfre P (6.45)

Comparing this with (5.18), we see that the remainder
after P terms of the Debye expansion for the residue-
series contributions is negligible, as compared with the
second term f, ...(B, ), if

P~ g% (6.46)
This gives the maximum number of terms that would
have to be kept in the Debye expansion.

Actually, (6.46) is probably an overestimate.
We can interpret (6.43) as implying that, due to the
correction factors indicated in (6.26), the internal
reflection coefficient for diffracted rays is brought
down from its “geometrical-optic” value R;; = 1 to

Ri~p=1—-c (6.47)

From (6.28), this is seen to imply that, in (6.26), we
should make the replacement

L;,—“(_ 3’—52) N ,;I’L;,-”(— Zél) (6.48)
M Mp

According to (6.45), the damping factor p” becomes
effective for p = p~, leading to the estimate
g <P <pl (6.49)

Since the number of terms in (6.38) is ~f3, it might
seem more expedient, in practice, to evaluate the
residue-series contribution directly, by numerical
summation of the edge-domain terms in the partial-
wave expansion. This is related to a proposal made
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by Ljunggrén.2® However, the objections to this
procedure would be: (i) the identification (6.38)
should be regarded merely as an order-of-magnitude
estimate; (ii) it is difficult to determine the precise
values of /_ and /, in (6.38), and the value of the sum
undergoes considerable fluctuations as extra terms
are added (cf. Ref. 8, Fig. 3); (iii) the physical inter-
pretation in terms of surface waves enables us to
understand the qualitative behavior of the results, as
will now be seen.

In order to determine the resultant effect of higher-
order surface-wave contributions, we have to sum
the contributions (6.26) for all values of p, up to a
maximum value P verifying (6.49). One of the main
difficulties in this summation is the dependence of {,
on p, corresponding to the different position of the
shadow boundary for each term of the Debye ex-
pansion.

We want to discuss the qualitative behavior of the
resultant surface-wave contribution. For this purpose,
an accurate evaluation is not required. We shall carry
out the summation by making several simplifying
assumptions:

(A) Only the contribution from the first pole 4, is
taken into account.

This is certainly adequate for an order-of-magnitude
evaluation. According to (6.26), the total residue-

series contribution to the backward scattering
amplitude is then given by
eiu’/B
fr(\s(ﬂ* 7T) A = 12 IP‘(N’ ﬂ)’ (650)
oy

where

W(N, ) = gexp [ip(2Mﬁ _ g) + iAIC,,J

L‘“l’(—%-’). :
x L ) (65D

The next problem is: Over what values of p does the
sum range? In principle, we have to sum over all p, up
to P. However, we can clearly restrict ourselves to the
diffracted rays that emerge closest to the backward
direction, because other contributions contain an
extra damping factor of at least exp (id,0,), corre-
sponding to an additional shortcut (cf. Fig. 10). Thus,
in (6.27), we impose the extra condition

0<£,<0,. (6.52)

28 T. Ljunggrén, Arkiv Fysik 1, | (1949).
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TasLE 1. Values of {, for the lowest values of p.
N =133, 6,=143978
P 2 6 10 15 19 24 28
Ly 0.26204 0.78612 1.31021 0.39452 0.91860 0.00029 0.52699
N =140, 0,=1.55039
4 2 6 10 14 18 22 26
' 0.040819 0.12246 0.20410 0.28574 0.36738 0.44901 0.53065
The values of {, satisfying the conditions (6.27), instead of square), for
(6.52) for the lowest values of p are listed in Table I for
N = {cos (/5)]! ~~ 1.236. (6.54)

N =133 and for N = 1.40. The latter value is close
to the critical refractive index N = +/ 2, for which the
diffracted rays are ‘‘at resonance.” In fact, for
N = \/ 2, as shown in Fig. 12, a diffracted ray comes
back to the starting point after each four additional
shortcuts taken through the sphere. Moreover, in
this limiting case, there are diffracted rays emerging
exactly in the backward direction, i.e., with {, =0,
for
p=4n+2 (n=0,1,2,-"). (6.53)
For N = 1.40, the angle {, corresponds to only 2.3°,
as compared with 15° for N = 1.33. For N = V2,
there are additional complications, as we see from
Figs. 3(b), 3(c), for p = 2, because this is the border-
line between having one ray or three rays near the
backward direction; thus, a special treatment would
be required.
There is another resonance, corresponding to a
period of five shortcuts (inscribed regular pentagon

&
<

FiG. 12. For N = V2, the diffracted rays are at resonance:
they come back to the starting point after four shortcuts, forming
a square.

The value N = 1.33 is about halfway between this

value and N = /2 (but still closer to N/ 5), so that
the corresponding values of p given by Table I:

A=2,6,10,1519,24,28,--- (N =1.33) (6.55)

show a mixture of periodicities 4 and 5, with pre-
dominance of the period 4.

On the other hand, for N = 1.40, the values of p
are of the form (6.53) up to p = 74. According to
(6.49), larger values of p would not give any appreci-
able contribution within the range of values of f for
which the glory is observed. Thus, we can make a
further simplifying assumption:

(B) The summation in (6.51) is restricted to the
values of p given by (6.53).

This is certainly a much better approximation for
N = 140 than for N = 1.33, and it becomes better the
closer N is to V2. The effect of deviations from
assumption (B), like those found in (6.55), will be
discussed later.

For N = 1.40, it follows from (6.30) and Table I
that

lanrz = (2n + 1){,, (6.56)

up to the same value of p for which (B) holds. Thus,
it is consistent with (B) to assume also that

(C) The angles {,,., are given by (6.56) for alf n.

For large enough n, (6.56) will violate condition
(6.52). In particular, the damping factor exp (i4,{,) in
(6.51), which would be bounded by l|exp (i1,0)|,
will decrease exponentially as n — oo, according to
(6.56). However, for large values of n, where the
exponential decrease becomes significant, there would
be such a decrease anyway, arising from the multiple
internal reflection factor p? [cf. (6.45)]. Thus, for N

sufficiently close to \/ 5, (C) is a reasonable assumption,
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The last simplifying assumption we shall make is

(D) The angle {, may be replaced by an average
value { in the argument of the Laguerre polynomial in
(6.51):

LyU(=20,/M) >~ Li0(=x),  (657)

where

x=20M ©<I<0). (6.58)

Since the Laguerre polynomial is a slowly varying
function of £, as compared with exp (i4,{,) [cf. (6.34)],
assumption (D) is also reasonable for an order-of-
magnitude evaluation.

The effect of the simplifying assumptions (A) to
(D) is to replace (6.51) by

W(N, f) ~ ¥(x, 8) = guei“"“"’f,;;i’z —x), (6.59)

where 4 is a complex number given by

8 =2MpB — g + Wl + ie (Imd>0). (6.60)

The term ie (¢ > 0) has been added to represent the
effective damping due to other contributions. It
corresponds mainly to the effect of the internal
reflection coefficient p [cf. (6.48)]. This source of
damping would still be present even for {, =0
(N = \/2), and 1t is, in fact, responsible for the
convergence of the Debye expansion for the residue-
series contributions, as we have seen above.

The main virtue of the approximation (6.59) is that
W(x, ) can be evaluated exactly, with the help of the
generating function for generalized Laguerre poly-
nomials (Ref. 27, p. 242):

a0

3 L2 = (1 = 2 oxp (;x:—]) (J2f < 1),
(6.61)

Setting « = —1 and z = ¢” (Im 4 > 0), we get [cf.
(C24)-(C29)]

o i
B(x, 9) =3 ePLEV(—x) = exp ( xe )

n=0 1 — 815

= exp (—— ;) exp (’2—‘( cot g) (Im & > 0).

(6.62)
To get F'(x, 9), it suffices to take

W(x, 0) = ‘11 [@(x, 5) — (I)(x, 5+ ’5’)

+Ox, 0 + m) — (I)(x, 5 + 37”)] (6.63)
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so that

Y(x,d) = }exp (— g)
X {exp (%c cot g) + exp (—- %tan é)

2
ix o) T
— e —cot |- —
P [2 (2+4H

ix 6
—e — =1 -+ =] 6.64
w[=Fen Gy e
In particular, if Im é is large, i.e.,
exp (—Im 0) K 1, (6.65)
we can employ the approximation
tan gm i + 2exp(—Im d)sin (Re d), (6.66)

so that (6.64) becomes

Y(x, 8) ~ }{cos [xe™™™?sin (Re §)]
— cos [xe™"™? cos (Re 6)]}

exp (—2 Im é) cos (2 Re )

o

Re (¥ (e« 1, x<1). (6.67)

x2
4
xZ
4

Let us study the behavior of ‘¥'(x, ) as a function of
d. We have {[cf. (6.59)]:

‘F(x, 5+ 75’) = —W(x, ), (6.68)
so that it suffices to consider the interval
0 < Red < 7/2. (6.69)

The behavior of ¥ within this interval depends very
sensitively on the magnitude of the damping, i.e., on
im o

For strong damping, e="™ ¢ « 1, we have, by (6.67),
V| « 1, and ¥ oscillates like cos (2 Re 8). In the
opposite: extreme of weak damping, Imd « 1, it
follows from (6.64) that |'¥'] has oscillations with
rapidly-varying period within the interval (6.69), but

it is still bounded by
¥ (x, 9)] < 1. (6.70)

We shall now discuss the implications of these
results for the theory of the glory. It follows from
(6.50) and (6.59) that

| fres (B> M) A 2.034(8/2)F ¥ (x, ). (6.71)
On the other hand, according to Sec. 5, the intensity
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in the glory is dominated by the residue-series contri-
bution:

i(8, m) ~ | freaB, M.

Let us consider the behavior of i(§, ) as a function
of B. It follows from (6.68) and (6.71)-(6.72) that the
intensity is a periodic function of Re d, with period
w/2. According to (6.60), the corresponding period
AB in 8, near 8 = f§,, is given by

(6.72)

A = ul

dRe d)\
M —
+ CZ( dﬁ )ﬂo

Within the domain of validity of the approximation
I, (3.29), for 4,, this becomes

(6.73)

v AM + 42[1 + ]"—2’(’-%)%]

Notice that, actually, (6.71) is not strictly periodic
in B, both because A depends (not very strongly) on
f and because Im ¢ also changes with §. Furthermore,
the strict periodicity in Re § follows from assumptions
(B) and (C), which are not very good approximations
for N = 1.33. However, we should still find a quasi-
periodic pattern, with period given approximately by
(6.73), superimposed on a more slowly varying back-
ground.

For 8, = 200, N = 1.333, (6.74) gives

B> 1. (6.749)

AB ~ 0.83, (6.75)

in excellent agreement with the corresponding value
(5.4) found by Bryant and Cox.® This provides the
explanation of feature (e) in the glory (Sec. 5A). We
see that the quasiperiodicity arises from the proximity
to the resonance situation shown in Fig. 12, with a
return to nearly the original position after each four
additional shortcuts.

Let us now turn to feature (f), the behavior of
i(B, =) within a single period. For 8, ~ 200, N = 1.33,
it follows from (6.60), I, (3.29) and Table I, that
e~™4 ~ 102 K 1, so that (6.67) holds. According to
(6.67), the total residue-series contribution has the
same order of magnitude as the second term in the
Debye expansion. As we have seen in Sec. 5C, this
term accounts correctly for the order of magnitude
of the intensity in the glory.

On the other hand, the relatively slow oscillations
of |¥'| given by (6.67) do not agree with the behavior
described in feature (f) (Sec. SA). However, the
assumptions made in the derivation of this result are
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violated for N = 1.33. In particular, assumptions (B)
and (C), which led to strong damping of high-p
contributions, are already violated for p = 15 and
p = 24 (cf. Table I). The latter, in particular, corre-
sponds to a very small {,. According to (6.49), these
terms are still significant for 8, ~ 200. In view of
(6.33)-(6.35), their contributions can be quite large,
and they probably account for the large spikes in the
backward intensity; e.g., the interference between
p =2 and p = 15 may give rise to narrow peaks.
The irregular behavior of the intensity within a period
is thus related to the mixture of periodicities 4 and 5 in
(6.55).

As N approaches closer to the resonance at v/2, the
assumptions leading to (6.71) become increasingly
better justified. The damping also decreases with {,
[cf. (6.60)], so that (6.64) should be applied. Thus we
should find a number of oscillations with rapidly
varying period within a single interval AS. The charac-
ter of these oscillations is strongly dependent on the
damping, i.e., on the deviation of the refractive index
from resonance. This extremely sensitive dependence
of the intensity on § and N explains feature (d) (Sec.
5A), the variability of the glory.

The ratio of the surface-wave contribution to
f(B,m) to the geometrical-optic contribution is
roughly given by [cf. (5.19)]:

[ frea(B> MIf, (B, m) ~ Btexp (=L Re 4y), (6.76)

but it can become much larger at resonance. However,
by (6.70) and (6.71), the magnitude of the resonance
peaks is bounded by

}f;es(ﬁ’ m)f < ﬂ‘&s

and this is also the upper bound for the ratio (6.76).

The origin of this upper bound can be understood
by going back to the partial-wave series. By I, (2.1)
and (6.38), we have

6.77)

Ly
fredBy m) & % lz (=1 + DISk) — 1] (6.78)

=Il-

The unitarity condition for the § matrix gives
1S:(k) — 1) < 2,

where the extreme value 2 is attained when the /th
partial wave is resonant. Substituting (6.79) in (6.78),
and taking into account (5.21), we are led to an upper
bound of the form (6.77).

Thus, the upper bound (6.77) corresponds to
saturation of the unitarity limit. It would arise from
having most partial waves within the edge domain

(6.79)
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(5.21) close to resonance. This provides a link between
the geometrical picture of diffracted-ray resonances
illustrated in Fig. 12 and the more familiar concept of
resonances in individual partial waves. The former are
due to poles of the Debye expansion; the latter
correspond to Regge poles close to the real axis [cf.
1, Fig. 3 and the discussion about the physical inter-
pretation of I, (2.34)-(2.35)]. The relationship between
the two sets of poles and the two pictures is similar
to that between the Debye expansion and the partial-
wave description: surface-wave resonances can be
regarded as a collective effect of many nearly-resonant
partial waves, and conversely.

In conclusion, we see that higher-order surface-
wave contributions are responsible for the main
features of the glory that were left unexplained in
Sec. 5 (quasiperiodicity, behavior within a period,
and variability). All these effects are related to the
existence of resonances like that shown in Fig. 12.

E. The Total Cross Section and the Ripple

Let us now go over to the forward scattering
amplitude. According to 1, (4.67), I, (5.48), and (6.16),
it can be written in the following form:

f(ﬂs 0) =fd(ﬂ, 0) +fF(ﬁ’ 0) +fy(ﬂ’ 0) +f;cs(.3’ 0),
(6.80)

Ja(B, 0) = if[2 (6.81)

is the contribution from the forward diffraction peak,

where

M i 8
=il ——+—M
J#(B,0) 1[7 M+15 1Y
{ 2_
- —'A:" @y _—3) o D 4 O(ya)} (6.82)

is the contribution from the Fock correction terms,

2
p0) = — — 2N

mz exp [2i(N — 1)B]

i 1 1
— — - I) —2
xb+ﬁp N+XN—H}+“54
N? . N—1
+ N+ 1 exp [2i(N — I)ﬁ](p(;, T)
(6.83)

is the geometrical-optic contribution (neglecting
noncentral rays) and, finally, f, (8, 0) is the residue-
series contribution.
In particular, taking N = 1.33, 8 = 130, we find
S,(130, 0) + f4(130, 0) + £,(130, 0)
A2 650 + (—3.223 + 2.449i) + (1.081 + 1.644)
= —2.142 + 69.093; (N = 1.33), (6.84)
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whereas the corresponding “‘exact” result, computed
in the same way as (5.15), is

(130, 0) = —2.529 + 68.988i (N = 1.33). (6.85)

Thus, the residue-series contribution must be given by
Fous(130, 0) ~ —0.387 — 0.105i (N = 1.33). (6.86)

Though smaller than the Fock and geometrical-optic
contributions in (6.84), this still has comparable
order of magnitude.

The total cross section is related to (8, 0) by the
optical theorem:

47rq®

Opop = 7 Im (8, 0). (6.87)

Taking into account (6.80)-(6.83), we find
"t_otz =1+ {Re My® + %5Re M !
2ma

4N% - 3)
+Im MO( 5 )y.)}
6 M

2N?
* (N + 1’8

+ Im |:e2i(x—1)p(p(z, N ; 1):“

g
+ res + (:) —2 ,
md? (5

)
{— T sin (XN — 1)f]

(6.88)

where the first term arises from the diffraction peak,
the second and third ones (expressions within curly
brackets) from the Fock and (central-ray) geometrical-
optic contributions, and o, denotes the residue-
series contribution.

The diffraction and Fock terms in (6.88) give rise
to a slowly varying background which is monotonically
decreasing, approaching the asymptotic value unity
as f§ — oo, This leads to the well-known result that the
asymptotic cross section is twice the geometrical
cross section (o, — 2ma?).

The geometrical-optic contribution gives rise to
relatively slow oscillations with period

AR = —2
1B N

(6.89)

and amplitude decreasing like =%, superimposed on
the background. These oscillations arise from inter-
ference between waves diffracted around the sphere
and those geometrically transmitted through it. An
analogous effect has been observed in neutron
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scattering at energies of several million electron volts
(“giant resonances”), and a similar explanation has
been proposed.??

Very accurate numerical calculations of the total
cross section, based on the partial-wave series and
done at very small intervals, have shown, super-
imposed on these broad oscillations, a quasiperiodic
structure, corresponding to rather irregular fluctua-
tions with short period and variable amplitude.
These secondary fluctuations are generally known as
the “ripple” (Ref. 7, p. 177, Fig. 32%). Most calcula-
tions have been performed for 8 < 20, but the ripple
also appears in Bryant and Cox’s curves for o, near
f = 200 (Ref. 8, Fig. 2). Moreover, as has already
been mentioned in Sec. 5A [feature (g)], these curves
show a striking parallelism with the scattered in-
tensity at 180°, with similar peaks, located at nearly
the same values of B, but with greatly reduced
amplitude. This parallelism strongly suggests that the
ripple must correspond to the contribution from o,
in (6.88).

Let us compute the contribution. According to I,
(5.30), (3.38), and (6.21), the residue-series contri-
bution to £, (8, 0) must be of the form

Joes(B: 0) = — 2—; it 20(—])'" > residue {AUp" "

x exp [i(2m + s + D7il};, , (6.90)

where r and s are integers related to p, and (6.22)
remains valid.

By comparison with (6.21), we see that the only
difference in (6.90) is an additional factor —ie®"4,
Thus, according to (6.26),

ei1r/3

14
X exp [ip (2M/3 - g)}Lir“(—zfp/M)

x ¥ (a;)"%exp (iL, L)1 + 9G], (6.91)

JoedB,0) & 17

where [cf. (6.30)]
{, =27 —p0,(mod27), 0< I, <2m (6.92)

In particular, for p = 1 and p = 2, (6.91) agrees with
I, (5.32), and with the extension of (3.46) to 0 =0
[cf. (6.32)].

29 J, M. Peterson, Phys. Rev. 125, 955 (1962); K. W. McVoy, L.
Heller, and M. Bolsterli, Rev. Mod. Phys. 39, 245 (1967); K. W.
McVoy, Ann. Phys. (N.Y.) 43, 91 (1967).

30 P, Walstra, Proc. Koninkl. Nederl. Akad. Wetensch. B67,
491 (1964).
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The dominant contributions arise from values of p
such that [cf. (6.52)]

0<,<89,. (6.93)

For N = 1.33, this implies that the lowest value of p
to contribute is p = 4. Employing (6.91) to estimate
the order of magnitude of this contribution for =
130, we find that it is of order unity, in agreement
with (6.86).

For N = 1.40, up to large values of p, the dominant
contributions arise from [cf. (6.53)]

p=4n (n=1,2,3,--7), (6.94)

whereas, for N = 1.33, we find deviations from (6.94)
already for rather low values of p, as in Table I.

By employing assumptions similar to those made
for the derivation of (6.50), we find

iy in/3
Fr80) = 3 a8, 0) ~ = ELE W, )
(6.95)
where
TN, p) ~ (%, 8) = 3 exp (Bind) LSV (%), (6.96)
with
x=2{M (0<{x09), (6.97)

where { is an average value of {,, and 4 is given by
the same expression (6.60). In fact, (6.56) is replaced
by } 3
Can = 1y = 2n{,,
with {; still given by (6.30).
It is readily seen, with the help of (C25), that (6.63)-
(6.64) are replaced by

(6.98)

Pz, 8) = }‘[d)(f, 5) + @ (x 5+ ’5’)

+(D()?,6+w)+(b(i,6+3—;ﬂ—l

Instead of (6.68), we now have

\‘I'f(x 5+ ’5’) — W%, ). (6.100)
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Thus, f,.,(8,0), and consequently also the ripple,
given by

2 .
Cres = 228 Imfo(B, 0, (6.101)

p

have the same quasiperiodicity in § as the intensity
in the glory, with period given by (6.73)-(6.74).

For N = 1.33, the behavior of the cross section
within one period is again determined by deviations
from (6.94) at relatively low p. The type of deviation
and the conditions for constructive interference are
similar to those found for the back-scattered intensity.
This explains the parallelism found by Bryant and
Cox [feature (g), Sec. SA].

Strictly speaking, the above results cannot be
applied to the range 1 < # < 20 for which most data
on the ripple are available, since they are based upon
asymptotic approximations that break down for such
low . However, we can try to employ them for a

qualitative understanding of the behavior of the ripple .

within this range.

According to (6.49) and (6.94), the dominant con-
tribution to the ripple for low § and N = 1.33 should
arise from p = 4 (diffracted rays taking four short-
cuts). It then follows from (6.91) and (6.101), again
restricting ourselves to the contribution from the pole
4,, that

Opes ™~ A(ﬁ)ﬂ‘% exp (— Z4 Im 4,) sin (4 Re d + y),
(6.102)

where A is an amplitude factor, J is given by (6.60),
and y is a constant phase.

As a function of §, (6.102) shows a sinusoidal
behavior with variable amplitude. This agrees with
the calculated curves up to § ~ 10.3° As § increases,
higher values of p start to contribute [cf. (6.49)] and
deviations from the sinusoidal pattern should appear.
Since the damping of the surface waves is not very
strong for low B, interference with the contributions
from values of p other than (6.94) and from poles
other than 2, should also give rise to such deviations.
This again agrees with the results of numerical
calculations.??

The period of the oscillations, according to (6.102),
is the same as that at 180°, given by (6.73). If we apply
the approximation (6.74), neglecting the correction
Bs¥ in the denominator, we find

AB~—"— 6.103
P 4M + ¢, ( )

if the dominant contribution arises from p = 4, as for
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N = 1.33. In general, for other values of N, (6.103)
must be replaced by

AB~ 29 _
where p is the lowest term that contributes. These
results should not be very accurate at low S, since
they are based upon the high-frequency approximation
(6.74).

The expression (6.104) for the period was derived
by Van de Hulst (Ref. 7, p. 377) on the basis of a
model in which only the lowest p verifying (6.93)
contributes. It was compared with the period observed
in numerical calculations for 8 < 20 and several
values of N, by Walstra.? It was found that (6.104) is
in very good agreement with the data, although it
predicts values systematically in excess of the observed
ones.

This is exactly what should be expected. In fact,
(6.104) should be replaced by a more accurate ex-
pression, corresponding to (6.73), and we have

dRe Ayfdf > 1. (6.105)

(6.104)

Physically, this corresponds to the fact that the phase
velocity of the surface waves is slightly smaller than
that in free space (they are delayed due to the curva-
ture of the surface). This was not taken into account
by Van de Hulst in his computation of the optical path
difference.

No ripple is observed in the total cross section for
N < 1, and, indeed, none should be expected, as the
diffracted rays cannot take any shortcuts through
the sphere in this case (cf. Sec. 6F).

The present theory also leads us to predict that the
ripple must be damped for an absorbing sphere
(complex refractive index), and that the attenuation
must increase with the absorption. This follows from
the fact that each shortcut is then accompanied by
absorption, i.e., Imd in (6.60) has an additional
component due to absorption. This attenuation of the
ripple has indeed been observed in numerical com-
putations for complex N.*

For sufficiently small # (f < 4), the peaks in the
ripple may be attributed to resonances in successively
higher partial waves.?® However, as # increases, more
than one partial wave may be near resonance, and we
finally come to the surface-wave model of the ripple.
As we have seen in connection with the glory (Sec.
6D), the two pictures actually merge together, each
effect in one description corresponding to a collective
effect produced by several terms in the other one.

3t D. Deirmendjian, R. Clasen, and W. Viezee, J. Opt. Soc. Am.
51, 620 (1961).
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‘P=1

F16. 13. The fowest-order residue-series contributions to the intensity at .= 90°.

Heretofore, we have restricted our discussion of
higher-order surface-wave effects to the forward and
backward directions. However, it is clear from (6.30)
that similar ripple effects should also be observed in
any other direction. For 6 = 90°, they have actually
been found in Bryant and Cox’s calculations, and the
corresponding period is twice that found for 6 = 0°
and 180° (Ref. 8, Fig. 2).

The reason for this is indicated in Fig. 13, which
shows the lowest-order contributions at 90° for
N = 1.33: They correspond to f;,,, and f; ., in (6.30).
Instead of (6.53) and (6.94), the dominant contri-
butions at 90° arise from p=2n+1 (n=0,1,
2, - - 4}, and the relative phase shift between successive
contributions is } Re 8, where 9 is still given by (6.60).
Thus, the period is 2A8, with AB given by (6.73).
This completes the explanation of feature (g) for the
glory (Sec. 5A).

We have seen that the amplitude of the ripple
component relative to the remaining contributions to
the scattering amplitude is at most of order f-% at
6 = 0° [cf. (6.102)] and at most of order A% at 6 =
180° [cf. (6.77)), where the ripple is the dominant
term (glory). In other directions, far away from
forward and backward, it follows from (6.30) [cf.
also T, (5.32) and 1 (5.45)] that the relative amplitude
of the ripple is of order B~+. [This is related to the
focusing factor £ in (6.32).]

Thus, the relative amplitude of the ripple far away
from the forward and backward directions is the geo-
metric mean of the values found in these directions. This
is in good agreement with the estimates made by
Penndorf.?® From numerical calculations ranging up
to 8 ~ 400, he found that the ripple is present in all
directions (curves for 6 = 10°, 20°, and 40° are given),
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with increasing relative amplitude as 6 increases from
0° to 180°, and he estimated the average amplitude as
roughly 0.1 at 0°, 5 at 90°, and 500 at 180°.

We conclude, therefore, that the ripple is a very
general phenomenon, that affects the intensity in any
direction, but only becomes dominant near the back-
ward direction, where it gives rise to the glory. Itisa
general manifestation of the resonance phenomena
for diffracted rays discussed in Sec. 6D. A practical
implication of this result for numerical calculations is
that very closely spaced points in 8 are required for an
accurate interpolation for the intensity in any direction.

F. Higher-Order Residue-Series Contributions to
f(B, =) for N <1

Finally, let us consider the residue-series contri-
butions to f(B, 6) for N < 1, e.g., at 6 = =. According
to I, (5.8) and to (3.13), the contribution to £, (8, n)
from the residue series at the poles —4,, is of the form

SomedBomy = = 2 S (=1
ﬂ m=0
x > residue {AU(pe*™*)*!
x exp [i2m + D)mAl}_; .. (6.106)

Taking into account (2.2) and restricting ourselves
to m = 0, this becomes

Fpres(fs M) ~ — gg—l- > residue (le_i”‘lUp"'l)A”,.
(6.107)

Substituting U and p by their explicit expressions {cf.
(3.20)], we find

FovedBo @) o (= 1)7H f;— S, (6.108)
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where
P 1 Y :))
o = residue {“—[ m ﬂ)]p+1} 2 (6.109)
—iTl (1) p—1
e, ) = e @Y1y g Ny gy,

(HP@PHP@P

and d(4, B) is given by (3.19).

The evaluation of the dominant term in r, _ is per-
formed in Appendix D. Substituting the result, given
by (D18), in (6.108), we finally get

) . N?
fp,res(ﬂ’ m) ~ 4im M
cx g 1
x exp (=2iM'B) 3 o D (7 — O)F

X exp [—idp(m — )11 + O(»™], (6.111)
where, as in I, (4.76) and I, (5.67),

(6:110)

0, =2cos 1N, (6.112)
e—iﬂ/a , 3
D, = -, ¥ =(2/a). (6.113)
2aa,y

In particular, for p = 1, the result agrees with I,
(5.64), and for p =2 it agrees with the analytic
continuation of (3.33) (extended to 6 = 7) to N < 1.
Actually, as is readily verified, (6.111) reduces to the
residue series in I, (4.85), for p = 0, so that it can be
employed even in that case.

The physical interpretation of (6.111) is a general-
ization of that given in I, Sec. 5E for p = 1. It is
illustrated in Fig. 14 for p = 3. Since no shortcuts
through the sphere are possible for N < 1, the only
possible “clementary interaction” of the surface waves
at any point of the surface, as they travel along on the
inner side, is a kind of “internal diffraction,” de-
scribed by the internal diffraction coefficient D,,, each
time they shed a ray to the outside region.

Since the shadow boundary §,.5; is the same for all
terms in the Debye expansion, all surface waves
describe the same total angle 7 — 0, before emerging in
the backward direction; in betweén, however, they
can undergo any number of internal diffractions, and
S res COTTESpPONAS to a term with p internal diffractions.

For instance, for p = 3 (Fig. 14), the corresponding
contribution is proportional to

3 76 70—y
D, fo do, fo do,

T—0—p1—P2 — 3
xf ! do, = ‘j):; (m 6,) ,
0 3t

and for the general case this gives rise to the factor
[D, (= — 0)]17/p! in (6.111). The physical interpreta-
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FiG. 14. Physical interpretation of (6.111) for p = 3. The only
possible surface interaction of the diffracted rays as they travel along
the surface on the inner side is ‘‘internal diffraction,” described by
the coefficient D, , that can occur any number of times.

tion of the remaining factors has already been given
in I, Sec. 4E.

Since (6.111) is valid also for p =0, the total
(dominant) contribution to f(8, =) from the residue
series at the poles 4, is

ﬂd&ﬂ=gﬂmmﬂ

N exp (—2iM’f)

[

~ dmi
x 3 exp [—iy(m — 0)]

X EOW,’—;M (1 + 00" (6.114)

which can be rewritten as
N2
.fr’:os(ﬁ, 77) A 4mi 'X/[—, exp (—2!M’ﬂ)

x Y exp [—idy(m — O))[1 + O(y)],
" (6.115)

=24 iD,. (6.116)

Thus, the total (dominant) effect of all residue-
series contributions is equivalent to that from p = 0
[cf. I, (4.85)], but now evaluated with poles at shifted
positions, given by (6.116). We can also say that the
effect of higher-order contributions is to ‘*‘renor-
malize” the phase velocities and damping constants
of the surface waves.

where
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In the approximation I, (3.35), for the poles,

. N
A, ~ o+ ¢—ir/s X +i—,
yl MV

(6.117)
the pole shift (6.116) corresponds to the replacement
[cf. (6.113)]

X, — X, + (i[27al}). (6.118)

For large n, the correction term in (6.118) is I(m))
[N, (D8)], but it has an appreciable effect for the
lowest values of n, which are responsible for the
dominant contribution.

In conclusion, we see that the behavior of the scat-
tering amplitude for N <1 is simpler in several
respects than that for N > 1. The surface waves
excited by the critically incident ray have the same
shadow boundary for all terms in the Debye expansion,
and they cannot make any shortcuts through the
sphere. Their resultant effect, at least for the dominant
term, can easily be summed (without the simplifying
assumptions employed for N > 1), and leads simply
to a renormalization of the propagation constants.
There are no resonance effects, and, consequently, no
ripple: the intensity in any direction, as well as the
total cross section, have a much smoother behavior
than for N > 1. In the quantum-mechanical inter-
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FiG. 15. Basic formulas applicable in each region for the first term
fo(B, 0) of the Debye expansion: (a) for N > 1; (b) for N < 1. All
equation numbers refer to Paper 1.
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FOCK  TRANSITIO!
REGYON

(5:28)
(5.32)IN5.34 LIT ReEGION
6389 (5.28)

sHADOW REGION
(5.6), (5.20),(5.26)

(5.32), (5.34),(5.49)

(a) N>1

FOCK TRANSITIO

LIT REGION
(5.71)
(5.75),(5.77),(5.82)

SHADOW REGION

(5.6)
(5.64),(5.70)

(b) N<1

F1G. 16. Basic formulas applicable in each region for the second
term f4(B, 0) of the Debye expansion: (a) for N> 1; (b) for N < 1
All equation numbers refer to Paper 1.
pretation we can say that a repulsive interaction leads
to a simpler structure than an attractive one.

On the other hand, as remarked at the end of I,
Sec. 5E, the structure of the transition region around
the shadow boundary 6 = 6, is quite complicated,
because contributions from all terms in the Debye
expansion must be taken into account.

7. CONCLUSION

The main conclusion that may be drawn from the
present work is that the modified Watson transforma-
tion enables us to extract from the partial-wave
expansion the complete asymptotic behavior of the
scattering amplitude in any direction in the high-
frequency domain I, (1.1). This is the purpose for
which the Watson transformation was originally
introduced.

To facilitate practical application of the results, it is
convenient to list the basic formulas that should be
applied within each angular region, for each term of
the Debye expansion treated in Papers 1 and II. This is
done in Figs. 15 to 17, which provide a graphical
summary of the main results. The equations listed in
Figs. 15 and 16 refer to Paper I; those in Fig. 17 to
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2 -RAY REGION

(3.36)
(3402, (3.46),(3.47)

/
RA\NBO/W/ REGION
(;/36)
(3.4¢),(3.47)
(4347,(4.35)

\\
FOCK
TRANSITION' REGION

(3.3
(3.46), (34),(357)
N

REGION
(3.40)

e (3.15),(322),(33%)
2
GLORY REGION
(3.10), (3.18),(5.42)

{-RAY

0-RAY REGION
(3.36)

(3.46, (3.47)
(3.5

(a) 1 <N<VZ

(b)Y HIGHER - ORDER 6 =1T - (650), (659, (6.64)

8=0 -

N<1{

FiG. 17. Basic formulas applicable in each region: (a) for the third
term f,(f, 6) of the Debye expansion, for 1 < N < \/2; (b) for the
effect of higher-order residue-series contributions. All equation
numbers refer to Paper II.

RESIDUE - SERIES (6.95), (6.96), (6.99)

CONTRIBUTIONS 8 =T - (6.115)

Paper I1. The angular width of the transition regions is
greatly exaggerated in these figures. Only the main
formulas are listed, without including the simplified
versions given in the text for special ranges of values of
the parameters within each region. The total scattering
amplitude in any direction is obtained by summing
the corresponding contributions from the first three
terms of the Debye expansion and taking into
account higher-order correction terms.

The subdivision into angular regions for each term
of the Debye expansion corresponds to that predicted
by geometrical optics for the associated class of rays,
together with transition regions.

In lit regions, the dominant term is usually (not
always!) given by the geemetrical-optic contribution.
Although these contributions were known, their
precise domain of validity had not been established.
The first correction term, representing the second-
order WKB approximation, has been evaluated in
each case; the first neglected term is O(872).

In shadow regions, the behavior is usually domi-
nated by surface-wave contributions. The most con-
venient language for the description and physical
interpretation of the results is provided by the geo-
metrical theory of diffraction, although it must be
used with due care.
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For N > 1, the surface waves are excited by tan-
gentially incident rays, just like those found for an
impenetrable sphere. However, penetration into the
sphere leads to several new effects. The diffracted rays
can have two types of elementary interactions at the
surface, as illustrated in Fig. 11. The combination of
these two types leads to a series of diagrams charac-
terized by the number of interactions or, equivalently,
by the number of shortcuts taken through the sphere.

For N < 1, we have found a new class of surface
waves excited by critically incident rays. They are
related to Schmidt head waves, but their sense of
propagation disagrees with that predicted by the
geometrical theory of diffraction. The physical
requirement is that surface waves always propagate
from the shadow boundary into the shadow. The
formulation of the geometrical theory of diffraction
should be modified to take this requirement into
account. It implies that the local behavior of a ray at
the surface is determined not only by the tangent
plane, but also by the distinction between shadow and
lit sides.

Some of the most interesting phenomena appear in
the transition regions. We have found essentially four
different types of transition regions: (a) normal
(Fock-type) transitions; (b) the region around the
shadow boundary for ¥ < 1; (c) the rainbow; (d)
the glory.

Transition regions of type (a) are similar to those
found for an impenetrable sphere. Their angular
width is usually of order y. The amplitude within these
regions can be described in terms of generalized Fock
functions. They include the region around the forward
diffraction peak (I, Sec. 4D).

The transition region (b) has a more complicated
structure, because it is a common transition region
for all terms in the Debye expansion, and the transi-
tion is of a different nature for different terms (I, Secs.
4E and SE).

The rainbow (c) is associated with the transforma-
tion of a pair of real rays into complex rays. The
Chester-Friedman-Ursell method allows us to treat
this situation. It leads to a uniform asymptotic
expansion, which contains the Airy theory as a
particular case, but represents a considerable exten-
sion beyond the domain of validity of this theory.

The glory (d) represents an impressive example of
“Regge-pole dominance” of the scattering amplitude
in near-backward directions. Van de Hulst’s con-
jecture that the glory is due to surface waves is con-
firmed, although his model, corresponding to two
shortcuts, must be supplemented by taking into ac-
count higher-order surface-wave contributions.



170

The present theory enables us to explain all the
features of the glory listed in Sec. 5A, except, of course,
the polarization. These features arise from a com-
petition between four different effects: (1) the expo-
nential damping of the surface waves as they travel
along the surface of the sphere; (2) the focusing of
diffracted rays along the axis, which enhances the
back-scattered contribution; (3) the high internal
reflectivity of diffracted rays at the surface, implying
that a large number of internal reflections must be
taken into account (At the same time, the deviation of
the reflection coefficient from unity eventually leads to
exponential damping of the surface-wave contri-
butions.); (4) The resonance effects associated with
nearly-closed circuits after four successive shortcuts
(Fig. 12).

Although an accurate evaluation of the higher-
order residue-series contributions would require
techniques similar to those discussed in Sec. 5D, we
have been able to estimate their resultant effect and to
discuss its qualitative behavior, with the help of several
simplifying assumptions. The technique is essentially
equivalent to finding a generating function for an
infinite class of diagrams and then employing it for
their summation.

The resonance effects found for the diffracted rays
lead to rapid quasiperiodic intensity fluctuations,
which are present in all directions, but only become
dominant near the backward direction, where they
lead to the large intensity variations that appear in
the glory. The ripple in the total cross section is a
manifestation of the same effect, with greatly reduced
amplitude. The relative amplitude of the surface-wave
contributions also decreases as § increases {(due to the
exponential damping), and eventually, for large enough
B, geometrical-optic terms again become dominant.

We have also established a link between diffracted-
ray resonances and collective effects due to resonances
in individual partial waves contained in the edge
domain. This corresponds to the relation between the
Debye expansion and the physical interpretation of
Regge poles given in I, Sec. 2. In both descriptions, a
large number of terms have to be taken into account.
In fact, interference between many contributions is
clearly required to explain the complicated structure
of the curves for the back-scattered intensity obtained
by Bryant and Cox.! However, the surface-wave
picture is physically more appealing and it leads
naturally to an explanation of all observed effects.

From the mathematical point of view, several
problems have received only cursory treatment (if
any) in the present work: (a) We have given only a
heuristic discussion of the convergence of the Debye
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expansion for the residue-series contributions (Sec.
6D). It would be desirable to show that a more accu-
rate evaluation of the residues leads to the same result.
(b) The detailed shape of steepest-descent contours
far away from the saddle points has not been discussed.
(c) A more careful derivation of the residue-series
contributions, by taking a sequence of contours
passing between the poles, is required.32

From the point of view of numerical computation,
an extensive program should be carried out for a
detailed comparison between the present results and
those obtained by numerical summation of the partial-
wave expansion. The ripple effects require close
spacing between calculated points for accurate
interpolation. The knowledge of the behavior of the
solution provided by the present results should be of
considerable help for performing the interpolation.
The irregular fluctuations due to the ripple may also
be washed out by suitable averaging. If only average
results are required, as is the case in many applications,
the present approximations may already be adequate.
A more ambitious program would be to substitute
tables of partial waves or scattered intensities by tables
of coefficients of WKB-expansion and residue-series
contributions.

Finally, from the physical point of view, several
applications and extensions of the present work can be
envisaged:

(i) For the third term of the Debye expansion, only
the range 1 < N < \/ 2 has been treated. Several
interesting effects appear in other ranges, particularly
in the neighborhood of transition points between
different ranges (Fig. 3). For instance, one can have a
confluence of saddle points near 6 = =, leading to a
mixture of rainbow and glory effects. The neighbor-
hood of these transition points should be investigated
both theoretically and experimentally.

In the range V2 < N < 2, where the neighborhood
of the backward direction is a 3-ray region (Fig. 3),
anomalously large back-scattering (e.g., from ice
spheres) has already been found® and discussed by
means of surface waves.®* In this context, back-
scattered rays corresponding to noncentral incident
rays are sometimes called “glory rays,” but this
phenomenon is clearly quite different from that dis-
cussed in the present work, although the one discussed
here can be regarded as a virtual continuation of the
other one.

32 R. F. Goodrich and N. D. Kazarinoff, Proc. Cambridge Phil.
Soc. 59, 167 (1963). ’

33 D. Atlas and K. M. Glover, in Electromagnetic Scattering, M.
Kerker, Ed. (The Macmillan Co., New York, 1963), p 213.

34 . R. Probert-Jones, in Electromagnetic Scattering, M. Kerker,
Ed. (The Macmillan Co., New York, 1963), p. 237.
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(i) In Van de Hulst’s chart of the N — § domain
(Ref. 7, Fig. 20, p. 132), we have treated the right-hand
side of the square, excluding a neighborhood of the
corners. It would be of interest to discuss also the
transition to neighboring regions, such as the anom-
alous-diffraction and Rayleigh~Gans regions (where
N is so close to 1 that the positions of the poles are
strongly affected), and the region N > 1 (where the
Debye expansion converges more slowly, but direct
reflection is dominant). The relation with the reso-
nance region has already appeared in the discussion of
surface-wave resonances and the transition to low
values of f§ (Sec. 6E).

(iii) Only the scattering amplitude has been treated.
The behavior of the wavefunction in the near region
should also be discussed, along similar lines to the
discussion given in N for an impenetrable sphere. In
particular, this would allow us to determine the
behavior within the sphere, which is of interest near
resonance. Instead of plane-wave scattering, one can
also investigate Green’s function. This may provide
a useful model for focusing effects in the presence of
a point source.

(iv) The extension to a complex refractive index, to
represent an absorptive sphere, should not be difficult.
Actually, the convergence of the Debye expansion
would be improved in this case, in view of the in-
creased damping due to absorption. The propagation
of radio waves around the earth is an example.

(v) The extension to complex N would be of partic-
ular interest for applications to nuclear physics, in
connection with the optical model. Applications to
atomic physics, including rainbow effects, have already
been discussed.?® The application to giant resonances
in neutron scattering®® has already been mentioned
(Sec. 6E).

Although the nuclear surface does not seem to be
very sharp, some evidence for nuclear glory scattering
has been given by Bryant and Jarmie.?” They have
obtained a good fit to near-backward alpha-scattering
from spinless nuclei at energies between 18 and
50 MeV with an angular distribution of the type
(5.20), where a is the nuclear radius. As discussed in
Sec. 5C, this indicates that high partial waves, with
impact parameters close to the nuclear surface, play
an important role. However, a model for the excita-
tions near the nuclear surface that might be involved
has not been given.

35 H, Bremmer, Terrestrial Radio Waves (Elsevier Publ. Co.,
Amsterdam, 1949).

3¢ K. W. Ford and J. A. Wheeler, Ann. Phys. (N.Y.) 7, 259, 287
(1959).

37 H. C. Bryant and N. Jarmie, Ann. Phys. (N.Y.)
published).

(to be
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(vi) The treatment should be extended to bodies of
different shapes, and the effect of the geometry on the
propagation of surface waves should be discussed.
Extension to inhomogeneous bodies should also be
considered. In quantum mechanics, this corresponds
to a discussion of the classical limit of quantum
scattering for more general potentials.

(vii) Finally, in order to account for polarization
effects, the scattering of an electromagnetic field
should be considered. As will be shown in a forth-
coming paper,” the present treatment can readily be
extended to the electromagnetic case, allowing us to
discuss the scattering of light by a transparent sphere.
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APPENDIX A: DETERMINATION OF THE
SADDLE POINTS FOR 1 < N < V2

According to (2.47) and (2.20), the saddle points of
(2.43) are given by (2.48), where

20, — 6, = (m — 0)/2, sinf, = Nsin0,. (Al)
It follows from (Al) that
cos 2 = 28I {[(1 — sin® 0 (N2 — sin® 0,)]}

2
- _1\2]_ +s5in®0,!, (A2)

where the positive square root is taken, because, for
the real saddle points, we must have 0 < 0, < 7/2,
0<L0, <72
Introducing
z=sinl, =1, d=2cos(0/2), m= N4,
(A3)
we find that (A2) becomes
Z{[(1 — 20)(@m — 22} + 22 — 2m} — md = 0. (A4)
Transposing the square root to the other side and
squaring, we find
28 —2mdz® — dm(l — m)z® + dmtdz

+ mrd2=0. (AS)
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The roots of this fourth-degree equation include, in
addition to those of (Ad4), spurious roots, which verify
(A4) with opposite sign for the square root.

The standard procedure for solving an algebraic
equation of the fourth degree® is to reduce it to a pair
of quadratic equations, the coefficients of which are
obtained by solving an auxiliary third-degree equation,
the resolvent equation. One must first choose the
appropriate root of the resolvent; in the present
range of values for N, where at least two of the roots
are spurious [cf. Fig. 3(b)], one must also choose the
appropriate quadratic equation, such that its roots
verify (A4).

This can be done by identifying first a particular
solution, corresponding to specific value of d (i.e., 6),
and then following it by continuity as d changes. A
suitable choice for 8 is the rainbow angle 0 5; according
to (2.35)-(2.36), we must then have

o o
d=d3=%(l—3l’f) ::-z=zR=2(3-—3—@),

(A6)
and this must be a double root [cf. Fig. 3(b)].
Applying the procedure indicated above, we find
that the correct roots are given by

Z=b+ -0 =b— (-0} (AD

where
b = }(md + e),

¢ = l[u + —m—-d(u -+ 4m)],
2 e

(A8)
(A9)
e=[u+ 4m(l — m) + m2d2]

(positive square root), (Al0)

and u, the solution of the cubic resolvent equation,
is given by
u=s;+ 5 — sm(l —m),

sie=1[r£ (A8,

(A11)
(A12)

r= tm*{—18(1 — m)’
+ 4[(1 — m)® + $m]d® + ¥md"}, (A13)
and A is the discriminant, given by
A = 8am*d*{—16(1 — m)® + [8(1 — m)® + 2Tm*)d*
— 21 — m)* + 27m*)d* + $im?d®}. (A14)

The condition for a double root is A == 0. This
indeed happens for d = dg, leading to the solution
(A6). For d < dp, i.e., § < iy, corresponding to the

38 1V, Uspensky, Theory of Equations (McGraw-Hill Book Co.,
Inc., New York, 1948), p. 94.
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O-ray region in Fig. 3(b), we have A > 0, and the
positive cube root is to be taken in (Al2). In this
region, (A7) gives a pair of complex-conjugate
solutions which leave the real axis at right angles (cf.
Fig. 4).

For d < dy, ie., § > 0, we have A <0 and
(A12) becomes

5.0 = [r £ (AP} = phexp (£ig/3), (Al15)
where the phase ¢ must be so chosen that
0<d<n (Al6)

and ¢ increases as d decreases. The roots z’, z” are now
real and they move away from the point z, in opposite
directions, as d decreases. The smaller root z” tends
to the origin as d -0 (6 — «). The larger root z’
tends first to the point z =1 (6, = w/2), which is
reached for 6 = 0, the 1-ray/2-ray shadow boundary
given by (2.30), corresponding to

d=d,=m"!—2. (A17)

Thus, in the domain d;, < d < dy, we have two real
roots, corresponding to the 2-ray region in Fig. 3(b).

As d decreases from dy, to 0, the larger root z’
decreases from 1 to 2[m(1 — m)]}. However, it is now
a spurious root, verifying (A4) with opposite sign for
the square root. Thus, only the smaller root z" is
acceptable. This corresponds to the 1-ray region in
Fig. 3(b).

To determine the behavior of the roots in the neigh-
borhood of 6 = 85, it is simpler to go back to (Al)
and to expand 6 in a Taylor series around 6, = 6,5,
making use of (2.34)-(2.36), as well as of the relation

di,/d8, = cos 6,/(N cos 8,). (A18)
This leads to

3., 34+ ¢

T4 i+ 16¢® o

s(17¢® 4+ 3) 5 (25¢* 4 6¢° — 15) 5
256¢° 1024

s(721c* — 1770c* — 855) 58

122 880

+

+ 0, (A19)

where

0 =0, — b, (A20)

e=0—108g,

and s and ¢ are given by (2.35).
Inverting (A19), we find the two solutions

’ 2
()= s = g Lt - AL

& 108s®
@ (" — 62 +3)
g ety

2 4 O(ed), (A21
108s% :ls + (e, (A2D)
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where

34

T (A22)

-
p 3]’
The corresponding roots z’, z”, according to (A3)
and (A20), are
:z”} =5+ cpet — (cq + gpz)e
2 2
L ch_ _c(17¢" + 3)
2 p 216s%p

+ spg — gp} L), (A23)

where upper signs correspond to z’ and lower ones
to z”.

For € > 0, (A23) gives the two real saddle points
around the rainbow angle. For ¢ < 0, we must
substitute

e —ilet = —i(0p — O (6 <0y, (A24)

and (A23) then gives the two complex-conjugate
saddle points shown in Fig. 4, where we have arbi-
trarily associated the root z’ with the lower saddle
point and z” with the upper one.

The corresponding values of cos 6, and N cos 6, are

{cos 01

3 (2
= s 4+ {sq — - €
cos 6{’} F spe (q 2p)

S
=15
${2p[q

— ¢cpq — gp} +O(), (A25)

2 (17¢® + 3)}
108s®

N cos 6; Sp [sq P’ 2}
=27 LML P 39
{Ncoseg} 2 T T T
s (17¢2+3)7 |, pq 2
Slsgp et Mg 4
;{41)[ T oss? j|+86( )
sp®

= st + 9)}e% + 0.  (A26)

The expansion of N cos 0, — 4 cos 0; will also be
required. It is given by
{N cos 05 — % cos 0{}
N cos 05 — % cos 07

_de s
2 4

N c(11c® — 15) 2 p

6 144s® * 34 560c¢%°
X (875¢% — 1257c* + 657c% + 45)e? + O().

(A27)
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APPENDIX B: THE METHOD OF CHESTER,
FRIEDMAN, AND URSELL

Let us consider the integral

Flx, ) = f ¢(w) exp [f (w, €)] dw,

where « is a large positive parameter and g and f are
sufficiently regular functions of their arguments (cf.
Refs. 3, 4).

We assume that, for some range of values of the
parameter e, the integrand has two saddle points,
w'(e) and w"(e), and that, for some value of ¢, e.g.,
e = 0, the two saddle points coincide. For fixed € # 0,
the ordinary method of steepest descents may be ap-
plied, provided that « is sufficiently large, « > «(e).
However, «y(e) — oo as € — 0, so that the correspond-
ing asymptotic expansions are not uniform. In order
to obtain a uniform asymptotic expansion in a region
containing € = 0, the following procedure is applied.

A new variable g is introduced, by

S, &) = 5u® — L u + A(e). (B2)
The two saddle points w', w” must correspond,
respectively, to +0% ie.,
w=w —>u=—{e; w=w"—u= ). (B3)
This allows us to determine {(¢) and A(e), by solving
the equations

SO, & = 3L + 4(9);

fOo', &) = =5L8(e) + A(9). (B4)

The transformation w <> x4 has one branch that is

uniformly regular and one-to-one near y = 0. This
branch is characterized by the fact that (B3) holds on
it. On this branch, for small x and €, we can expand

G(w, &) = g(w) ‘;7": = 3 PO — O™
+ 3 auont — O", (BS)

where the coefficients p,,(¢€), g,,(¢) can be determined
by repeatedly differentiating (B5) and setting w = w’,
pu=—Candw=w,pu= .

It follows that

F(x, €) ~ 2mi exp [xA(e)]{z Pu(F (L &, C)

+ 2 4a()Gn(L, «, C)}, (B6)

(BI)

where
Fall, ©) = - f (u* — O™ exp [k(bi® — Lw)] ds,
mlJC
(B7)
Gl 1, C) = = f u(® — O™ exp [c(3s® — Lw)] ds,
2@ Jo
(B8)
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and C is the transformed contour of integration, where
the limits of integration are formally extended to
infinity.

The functions F,, and G,, can be expressed in terms
of the Airy function and its derivative. In particular,
if C is the contour C,; defined by

m/.’i
[ (B9)
o «1r/a
we have
FO(C’ K, Cl) = K_% Al (K§C)a
K = —x % AT’ (x}
GO(C’ ,Cl) Al ( C)’ (BIO)

FI(C: K, Cl) = 09
G, k, C) = —« ¥ Al («30),

and higher-order functions are determined by the
recurrence relations

Foll k, C) = — f(m — )Gy oL, . C),

Gl r, C) = — i[(zm — OF, (L k, C))

+ 2(m — DIF, o, , C)]. (BL1)

Substituting these results in (B6), we are led to an
asymptotic expansion of the type

F(k, €) = exp [«A(¢)]
+0 ()

y {Ai (K%‘z)[gas(e)
LAY (gm[gbs(e) +0 (Kﬂlﬂl)}}, (B12)

K =0 x*

1
K =0 K°

where the coefficient functions a(¢) and b () are
regular for small € and the error terms are uniform in
¢ for small e. Thus, (B12) is valid in a region |¢| < R,,
independently of «.

If appropriate regularity conditions are satisfied,*
the domain of validity of the uniform asymptotic
expansion (B12) can be extended to a larger region
by matching it with the steepest-descent expansion,
with which it has a common domain of validity.

For this purpose, one makes use of the asymptotic
expansions of the Airy function and its derivative®:

. P 5 _
A@~ o (|1 - 00 ]
(largz| < m), (B13)
. 2t 7
! AN — — — 4 OO
AT (@)~ = e |1 O )|
(larg z| < m), (Bl4)

3% Handbook of Mathematical Functions, M. Abramowitz and
I. A. Stegun, Eds. (National Bureau of Standards, Washington,
1964), p. 448.
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Al(=2) ~ (%Z{H + ()] sin (n + g)

- 7%7 [ + 0(7)] cos (n + 3)}

(larg z| < §m), (BI5)
A. ( ) 7& ) v
i'(—z)~ — — {1 +O(‘)]cos( +—)
(77')% { 7 g 4
7 T
— — 1 4+ 0(n¥]si -
7217[ + O(n™)] sin (n + 4)}
(Jarg z] < %m), (B16)
where
n = 324, (B17)
APPENDIX C: EVALUATION OF r,,,
According to (6.24), we have
D
rn,p — _]_ i_ {Ep‘f‘l cp(l’ ﬁ) ; , (Cl)
p!ae [d(A, B)Pe=0
where
e=4—2,. (C2)

Only the behavior of d(4, ) near ¢ = 0 is relevant for
the evaluation of the residue. Thus, we can employ the
Taylor series expansion

d””(}. , ﬂ) &
d(3, B) = d(a,, n c3
(4, B) = d( ’3),2: 0., B) PR (€3)
where d® denotes the kth derivative with respect to
and d9 = 4.
It follows from I, (A11)-(A18), that

HXBHD(B) = iM + 0,
where M = (N2 — 1), as in (2.38), whereas all other

ratios that appear in I, (A25)«(A27), such as

H2(BHY(B), HPBHY(B), -+ are at least
O(y®). Similarly, by I, (A23), the derivatives of [l «]
are at least O(y3). Therefore, it follows from I, (A22)
and I, (A25) that

d(A,, B) = —[1 BIHLB)HD(B) + O0()
= —M? 4 0. (C5)

Similarly, by complete induction, one can show
that

(C4)

d(k+1)(}“n s aB) = _(k + 1) d(k)()‘n ’ ﬁ)
HPBHEP(B) + 0(%); (C6)
so that, by (C4) and (C5),

d® Ay, B)d(Ay, B) = k! (—iM)* + O(%). (CT)
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Substituting this result in (C3), we find

A B) = d(h. B) ¢ 3 (—iMe)* + 0

M2 2

=17 + O(y9). (C8)
On the other hand, according to I, (3.6),
4i
ST AT TSR
so that

4i

[18] — N[la] =d(4, B) — m. (C10)

Near 4 = 4,, N, (Al6) and I, (A6) give

9
W2,y —
H o) = (ﬂMﬁ)
(M — 2cost L = 7
xexpli;tt(ﬂM Acos N ):]

4
X [1 + 00,
so that (C10) becomes, with the help of (CB8),
[18]— N[la] = d(4 B) — 2iM
_ M?% —

Me = 2IM 1 oy
1+ iMe )

(C12)
Similarly, let

u(d, B) = [HP (B (C13)
Then, just as for (C6), one can prove by complete
induction that

u®(A,, B) = (=)' + D1u(,, p)

HEE) - o
. +0(»9)], (Cl4
x [H%,(ﬂ)][ 0N (Cl4)
i.e., with the help of (C4),

u (@4, Bu@,, B)

= (k + D! (—iM)¥[1 + O(p»]. (Cl5)
Thus, near 1 = 4,, neglecting O(y?),
_ 0 (k)(ln’ ﬁ)e
i, ) = uha, 352
S Ml = — 1
—kgo(k + D)(—iMe)f = U+ M (C16)

Taking into account I, (All1), I, (A19), I, (A8), this
becomes

1 _ M2 in/3 [1 + O(yz)]
[HY(BF (1 + iMe)®
Substituting (C11), (C12), and (C17) in (6.25), we

C17
da%y* (€17

(C11),
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finally get, near 2 = 4,

3
i)%e in/3 775 M?

¢4, p) = (— 16 2%

) (=2iM + M%)

% exp QipMp + iA,
p QipMp + ikity) =

x exp (iel,)[1 + O(yH)], (C18)
where [cf. I, (5.21)]:
{,=5sm—2p cos‘lﬁ =s7 — pb,. (C19)

Taking into account (C8) and (C18), we find that
(C1) becomes

/3 _p3 2ipMB
L€ nfe

Fop = — y T6_ M-l
exp (il
x ZRUAL) & r 131+ 00A), (C20)
where "
1
M, L) = 5 I=20M o+ MO exp (il -
(C21)
With the change of variable
2
—2iM 4+ M = M{ X, (C22)
1
we finally get ’
F,(M, L) = M2”‘1L““( 20,/M), (C23)
where

(-1) _&1_ P-1,2y == P_Iﬁ
L= p! d”(x ) 21(m—l)m!

=X LI (—x) = L(—x) = L,_,(—x)
14

(r21) (C24)

is a generalized Laguerre polynomial (Ref. 26, p. 239).
We define

Ly (—=x) = 1. (C25)
From (C20) and (C23) we obtain the final result
ew/3 3
o= =2 exp QipMALT™ (=24, M),
Y

x exp (id,L)[1 + O(y)).
APPENDIX D: EVALUATION OF r;, ,
From (6.109), we get

(C26)

v !
r;z » = -1— _d_ {€ﬁ+1 cp(}" ﬂ) } , (Dl)
’ plde® [d(A, B)P e
where
e=A—12,. (D2)



176

Again, only the behavior of d(4, f) near ¢ =0
is relevant, so that, as in (C3), we expand

(%)
) = d(t, H3 el ﬂf) =

From I, (A11)-(A18), we find that,

(D3)

HZ()/HE(2) = —iM'IN + O(F),  (D4)

where M' = (1 — Nz)f, as in I, (3.31), whereas all
other ratios that appear in the analogs of I, (A25)~
(A27) for [2 a] are at least O(y?). Similarly, by 1, (2.39),
the derivatives of [1 §] are at least O(y®). Thus, we find

(2)( )

dr,, ) = 1181 — e

M2
=— + 900"

N[2«] = N [20] + O()
(D3)

One can show by complete induction that

P
d(k'*l)(l;, ﬁ) —(k+1) (2)E ; i(k)()hgz’ /3) + O(yz)a
(D6)
so that
d(k) Z LML 2
(z(i ﬂ'f) K1 ( F) +00". (D7)

Substituting this result in (D3) and (D35), we find

4. ) = ed(iy, S (M IV + 06

M% 2
=N M- + 0(y%). (D8)
On the other hand, we have [cf. (3.31)]
—in/3
HP(0) ~ 25— Ai (€7/%), (D9)
where
x ==y, y=0x' (D10

and, by (3.32),

—in/6
HYo) ~ H () ~ — ——. (D11)
Warzy
Similarly, from (D9),
[1a] = 00", [la]=0@Gp3, (DI2)

H. M. NUSSENZVEIG

so that, near 1,
(1Al —N[lal~ 18], = iM’, (D13)

with the help of I, (2.39). To the present order of
accuracy, (D11) and (D13) may be directly substituted
in (6.110). Similarly, we may replace H'(f) by
[cf. (C11)]

HV(B) ~ (Willﬁ)%exp (iM’[)’ z}.% — i Z) (D14)

where 6, is given by I, (4.76).
On the other hand, by I, (Al), and by (D10),

HP(2) ~ 2" Ai (—x)[y', (D15)
and, with the help of (D4), we find
HP(a) ~ H;i)'(oc) + eHﬁi?(oc) ~ H;zﬂ),(oc)(l - iMWe)
e N M’
= 2"/ — ’Za’,l(l —i— ) D16
YA N (D16)

with all higher derivatives yielding higher-order con-
tributions.

Substituting (D11)-(D16) in (6.110), we finally get,
near A = A

AT

m™M'NB3

=-— exp [—2iM'8 — id, (7 — 6,)]

[1 4+ 0%
(D17)

N (— eiﬂ/6M12 )1) exp [—i€(7T —_ Bt)]
12,1 ! p+1
27Nayy (1 _ l]\_/I_e)
N

Replacing (D8) and (D17) in (D1), we find

2A7203
= — TN
’ SM’
eiﬂ/ﬁ P
X exp [—2iM’f — il (m — et)](— —T)
2maly
l d_ —ie(r—08;) O 2
X [e I+ 009l
dée? =0
so that, ﬁnally,
2 263
Py = — exp [—2iM'B — id (7 — 0))]

et 8M’
—in/3 J— D
x -;[— f—(—i)} [t + (A1 (DIS)

2ma,y
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The problem of two spin deviations from the fully aligned state is studied in a linear chain for the

Hamiltonian [J(7,j) > 0]:

H=—} X JG/)S:-S; — de 2 JG, /) Sy,

where (nn) and (nnn) mean nearest- and next-nearest-neighbor interactions, respectively. The behavior
of the bound state, which is found to exist for o > 0 only, is discussed.

INTRODUCTION

Recently we studied the ground state properties of
the Hamiltonian

N N
=—%J§ici-ci+l—%JocZ]ci-ci+2 )
(N+1=1, N+ 2=2)! Short chains of up to
eight particles were exactly studied, and upper and
lower bounds for the ground-state energy per particle
for arbitrarily large N were found. In this paper we
present some results on the study of a few excited
states of the Hamiltonian (1). Specifically, we shall
study the one and two spin deviations from the
completely aligned state. The fully aligned state is the
exact ground state for the case J > 0, « > 0 (i.e., all
interactions ferromagnetic). So our considerations
have relevance to the low-lying excited states for this
case. For J negative (antiferromagnetic case), the
completely aligned state is a highly excited state, such
that our considerations are not particularly useful.
In this paper we consider only the ferromagnetic
case, J > 0. For « negative with J > 0, the ferro-
magnetic state may no longer be the ground state.
In fact, it was conjectured that the ground state for
J >0 and « < 0 is of spin zero and that « = 0 is
itself a singular point. Although no proof has as yet
been found, we shall offer here some illustrations of
the singular nature of the point & = 0.

With « = 0 in (1) (that is, the linear chain having
only nearest-neighbor interactions), the problem
has been the subject of several well-known investiga-
tions.2 Bethe® considered two and more spin deviations,
and was able to solve the resulting difference equations.
His method depends crucially on his famous ansatz

1C. K. Majumdar and D. K. Ghosh (to be published).
2 The literature may be traced from C. N. Yang and C. P. Yang,
Phys. Rev. 150, 321 (1966).

3 H. Bethe, Z. Physik 71, 205 (1930); L. Hulthén, Arkiv Astron,
Fysik 24, No. 12 (1938).

that, for example, the two-spin-deviation states have
the form

¥ =3 a(m, n)yp(m, n),

a(m, n) = exp (ikym + ikyn + }ig)

+ exp (ikem + ikyn — ig). (2)

Here y(m, n) denotes a spin function having up spins
at the mth and the nth sites. k; and k, are wave-
vectors and ¢ may be called the phase shift. With
appropriate boundary conditions, Bethe found that
the states with two spin deviations formedacontinuum
(k1 , k, real) and that there was a bound state (k,, k,
complex, with imaginary parts equal but of opposite
signs), produced by interaction of the spin waves.
One can define a wavenumber K = k; + k,, which is
a constant Qf the motion and can be thought of as
the wavevector corresponding to the center-of-mass
motion of the two excitations of up spins. The bound-
state energy varies with K—a characteristic feature
of this problem—and for each value of K there exists
only one bound state below the continuum. Bethe’s
method was extended by Dyson to two and three
dimensions in his work on the Heisenberg model.*
The one-spin-deviation problem—the simple spin
waves—for the Hamiltonian (1) can be handled by
Bethe’s method. The two spin deviations lead,
however, to a set of difference equations difficult to
solve. No simple guess corresponding to Bethe’s
ansatz has so far been found. Fortunately, alternative
methods are now available, which are sufficient to
reveal the nature of the spectrum and give some idea
of the bound state. Some picture of the wavefunction
can also be obtained. The method of Green’s functions
was used by Wortis® in the examination of the problem
of the bound states of the Heisenberg model. Wortis’s
equations can be directly extended to our Hamiltonian.

1F. J. Dyson, Phys. Rev. 102, 1217 (1956).
¥ M. Wortis, Phys. Rev. 132, 85 (1963).
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However, we find another method used by Fukuda
and Wortis,® one that is simpler and more convenient.
This method employs nothing more than the Schrd-
dinger equation. The derivation of the equations by the
Green’s function method (along the line followed by
Wortis) is completely straightforward and is left to
the interested reader.

The first section gives the solution of the trivial
one spin deviation problem. Then we take up the
two spin deviations and discuss the continuum and
bound states for « > 0. For « < 0, the continuum is
easily discussed, but we have not been able to find
any bound states.

I. SPIN WAVES

In the simple case of one spin deviation, we can
allow a to be positive as well as negative: —1 < o« < 1.
It is convenient to write the Hamiltonian (1) as

H=—$3JG,)8;-8; — 2 Y(i,)S;-S;. (3)
2,7 7

Here,
. J, if i and j are nearest neighbors,
JG,j) =

0, otherwise.
Similarly,

) Jo, if iand jare next nearest neighbors,
Y@i,p =

J 0, otherwise.

Notice the unimportant change in the magnitude of J
from Eq. (1) by a factor 2. The commutation relations
of the spin operators are the usual ones:

St = 5" 4 iSY,
[S?, St] = £S5+, 4
[ST, S7] = 25~
The spin-deviation-number operator is
n=NS+32 Si )

n commutes with H and, for the fully aligned state
|0), n = 0. The spin waves correspond to the state
with one spin flipped up, » = 2S5, and the wave-
function can be written as

Y =2 u(i)S{ |0). (6)
The Schrédinger equation is
EY =HY. )]

If E, is the energy of the state |0) of all down spins,

8 N. Fukuda and M. Wortis, J. Phys. Chem. Solids 24, 1675
(1963).
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SPIN WAVES
s=h

FiG. 1. The spin-wave spectrum (S = ) with the next-nearest-
neighbor interaction present. For o < —0.25, the fully aligned
state is unstable with respect to the spin waves for small k.

we get

(E — E¥ = 2 u(i)[H, S{}|0). ®

Define the spin-wave energy w = E — E,. Then,
using (4), we get

[w — 28J(1 + @)]u(])
= =52 U m) + Y(I, m)u(m). (9)

Define the Fourier transform as

u(l) = ~ 3 e¥g(k), (10)
N7%

where the wavevectors k fill up the Brillouin zone

—m < k < =. Then we get the spin-wave spectrum as

w = 2SJ(1 + o) — 25J cos k — 2S8Ja cos 2k. (11)

In Fig. 1 we represent the spectrum for —1 < a < 1.
While, for « positive, the fully aligned state remains
always stable with respect to the spin-wave excitation,
this is not true for « negative. For a < —0.25 the
spin waves lie lower in energy for small k; in other
words, there, a state of total spin S(N — 2) lies lower
in energy than the state of total spin SN.

II. TWO SPIN DEVIATIONS

Following Fukuda and Wortis,® the eigenstate V'
of two spin deviations can be written as

¥ = z U, j)SFST|0y, (12)
UG, j) = UG, ). (13)

For S =14, U(,i) is not defined. The normalized
two-spin-deviation wavefunction with spins up at the
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sites i and j is

o SN
wip=as(1-22)vep. 9
28
Writing the energy with respect to the aligned state
of energy E, as w (not to be confused with that of
Sec. I), i.e.,

H|0) = E|0), HY =EVY,
w=E~—E, (15)
we get
o¥ = ¥ UG, ))H, S7S7110). (16)

Utilizing (4), we can write down the equations
determining U(i, j):

[ — 4JS(1 + 0)]U(, j)
= =8> {[JG, D + Y, DIUG, D)

+ [JG, D) + Y3, DIUG, D}
+ UG ) + YDRHHUG, D + UG, )] — UG, -
(17)

As Fukuda and Wortis remarked, for S = %, the
i = j component of (17) does not follow from (16).
It is clear that for S = } the components U(/, /)
entirely cancel out of (17) for i # j. Thus the Schro-
dinger equation leaves U(i, i) totally undetermined.
The set of equations (17) for i s j is complete for the
determination of the S = 4 problem. In order to take
Fourier transforms, it is convenient not to have a
special situation at i = j. So for § = }, we choose to
let the i = j component of (17) define the unphysical
U(i, i) in terms of the physical U(i,j), i # j. This
definition can have no effect on the physical U(i,j)’s
and, by (14), is not reflected in the wavefunction. All
the components of (17) now hold for arbitrary S.

Define now the center of mass and the relative
coordinates

2R=RZ+RJ, r=R,~—Rj

and introduce the Fourier transform

UG, j) = }Vgei"RUK(rx Uk() = Ug(=r). (19)

(18)

The sum over K runs over the first Brillouin zone.
Then the periodicity condition on U is Ug(r) =
exp (IKL[2)Ux(r + L), where L is the size of our
chain. Since each unit distance of the chain is of
length one, L = N. So Eq. (17) becomes
[0 — 47S(1 + )U(r)

+ 28J{cos 3K[Ug(r + 1) + Ug(r — 1]

+ acos K[Ug(r + 2) + Ug(r — 2)1}

= J(r)[cos }KrUg(0) — Uxg(r)]

+ Y(r)lcos }KrUg(0) — Ug(r)}.  (20)
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The right-hand side represents the interaction between
the spin waves. We now introduce a further Fourier
transform

UK<r>=§kzF MUK, Ug(k) = Ug(—=K), (1)

where k ranges over a Brillouin zone F appropriately
shifted so as to incorporate the periodic boundary
condition. Equation (20) becomes

[0 — eg(OUx(k) = = 3 Vielk, K)U (k). (22)
N r'eF

The sum in k" goes now over only the positive half
F of the Brillouin zone. Also,

ex(k) = 4JS[l + o — cos K cosk

— acos Kcos 2k]. (23)

ex(k) is the energy of the two free-spin waves of the
type (11), and it forms a continuum for each value of
K. The interaction is

Vilk, k') = 2J[cos k{(cos 3K — cos k')

+ o cos 2k(cos K — cos 2k')]. (24)

We shall henceforth discuss only § = } in detail
and look for bound states-outside the continuum.
Since the kernel Vi (k, k') is separable in k and &', the
solution to (22) is of the form

Ug(k) = ¢,[cos k[ Dg(k, w)] + cylcos 2k/ D (k, »)},
(25)

Dg(k, w) = w — ex(k). (26)

The Fourier transform of U (k) gives the wavefunction
in the coordinate space; it has quite a complicated

structure. Substituting (25) into (22), we get the
eigenvalue equation for the bound state as

1 — Ill 112 ‘

= 0. 27

121 1 had 122

The I’s are certain integrals when we replace the
summation over k by integration:

T 1 .
I = g.{f dk (cos 3K cos k) cos k . (28)
mJo Dy (k, w)
T 1 —
Iy = — Zlf dk (cos 1K — cos k) cos 2k . (29)
™Je Dg(k, )
Iy = — 2J al dk (cos K — cos 2k) cos k . (30)
7 Jo D (k, w)
i - 0
Iy = 2Ja dk (cos K — cos 2k) cos 2k ‘ G

m Jo

D (k, w)
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Putting « = 0, we recover the term (I — [;) alone,
which gives the Bethe result. Even for a linear chain
we have a more elaborate bound-state condition
which, in general, has to be analyzed numerically.

III. BOUND STATES

The situation for K = 7 can be treated analytically
and it reveals the most interesting features of the
problem. Consider first K = 7 and o = 0. Equation
(27) reduces to

i dk cos® k —0
w—2J
Therefore, w = J. For general o > 0, the continuum
ex(k) = 2J(1 + &) + 2Jx cos 2k; and the continuum
extends from 2J upward to 2J(1 + 2a).
The integrals (28)-(31) are very singularly behaved
functions of «. Let

1+

mJo

D,(k, w) = w — e,(k) = —2Ju(t + cos 2k) (32)
with

t=1+ o[l — (0f2])]. (33)

In (32) and (33) we assume that o« 7 0. Notice that,
as long as w2/ <1 for « >0, t> 1. Consider
o > 0 from now on. Then, with the help of

J’” dx 7sgn t
I = == .
o(t+cosx) (-1t

and other elementary integrals, we get

1] >1, (34)

Iy = a7'[1 = (t — DYt + DY,

112 = 0,

Iy = (1 — O — t/(&* — D).
Hence the bound states are solutions of the equation
Fw,0) = {1 — 371 — (t = DY + Dy

x {1 —(1 =0l =t = D =0. (35

The second factor can be zero at t = 0 and 1, which
are not in the allowed region. The first factor gives an
acceptable solution:

=14+ -21 - 1~-2]. (36)
Hence the bound-state energy is
2
wp = 21(1 — 1(1—‘—%1). 37)
2 1—u

The solution reduces to the correct value at « = 0,
and the bound-state energy goes on rising with «
toward the continuum until, at « = 0.5, the bound
state reaches the edge of the continuum. The signifi-

C. K. MAJUMDAR

TWO SPIN DEVIATION
SPECTRUM
S yz

dle
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F1G. 2. The continuum and bound states for two spin deviations
{« > 0). The upper and lower boundaries of the continuum for
a = 0, 0.25, 0.4 are drawn. The bound states increase in energy with
o from 0 upward.

cance of « = 0.5 is not hard to see. The maximum
attraction of the first term in V,(k, k') is —4JS(k = 0,
k' = 0); this can be counterbalanced exactly by a
contribution of the second term 8/S« for « = 0.5,
thus destroying the attractive nature of the inter-
action. This argument has obvious generalizations
for K # .

Although the appearance of (37) seems to allow a
well-defined wy, for negative « by a series expansion
for small «, this is easily ruled out. For negative «,
t > 1 for w > 2J, but the expansion gives o < 2J,
which is a contradiction. The point is that the inte-
grals I; were evaluated for ¢ > 1 and « > 0, and ¢
does not have any power series in o around o = 0.

For K = w/2, one can again do the integrals
analytically, but the bound state condition yields a
complicated polynomial whose highest term has a
multiplier in «?, thus revealing again the singular
nature of « = 0. We have numerically evaluated the
bound state energy at K = #/2 and K = 3#/4 for «
up to 0.5. These points are indicated in Fig. 2. The
bound state exists for « > 0.5 for smaller values of X.
The merging into the continuum starts from K = =
at « = 0.5; the corresponding value of K diminishes
as « keeps on increasing. The existence of the bound
state is therefore a somewhat delicate function of the
strength of the next-nearest-neighbor interaction.

For J positive and « negative, the continuum begins
to spread below the boundary for « = 0. For « < —},
a part of the two-particle continuum definitely lies
lower in energy than the completely aligned state.
However, we have not found any bound state in this
case.
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We consider an integrable function g(¢) which behaves as ¢t~ when ¢ tends to infinity ({ is a finite
number) for 0 < & < 1, and show that its Stieltjes transform has the same behavior when |z| approaches
infinity and provided that z is in the sector |arg z| < = — &, where = > ¢ > 0. (Theorem 1). In addition,
we study the cases of « equal to zero, one, and larger than one (Theorems 2-4). Our results contain those
of L. Lanz and G. M. Prosperi [Nuovo Cimento 33, 201 (1964)] and those of W. S. Woolcock [J. Math.
Phys. 8, 1270 (1967)]. They are proved in a direct manner, using a theorem of D. V. Widder [ The Laplace
Transform,(Princeton University Press, Princeton, N.J., 1959), fifth printing, p. 329] and the regularity

of the integral transforms that arise.

First we establish a lemma.

Lemma: Let t be a real variable, z a complex
variable, { and A finite numbers, and let § denote a
region in the complex plane. If

J‘ |k(z, 1) dt < M, M isindependentofzeS, (1)
0

rto
J k(z, )] dt —0, for |z|— o0, z€S, (2)
0

for every finite-positive 7y, and if
f k(z,)dt - A for |z|—> o0, zeS8, (3)
0
then

f " k(z, Da(t) dt

is a regular transformation, i.e.,

) 7> L= k(2 D0 dt — 4L

for jzj—>o and zeS,

whenever

f k(z, t)g(t) dt exists for z e S.
0

Proof: The proof of this lemma is similar to that
of the case of a real variable z. (See, for example,
Ref. 1.) In fact, according to Eq. (3), it is enough to
show that

g < 0 .—.>f k(z, )g(t) dt — 0,
0

for |z] > and zeS. (4)

We know that for every e > 0 there exist z, and 7,(e)
such that

to
f k(z, )} dt < e, forevery z,|z| > |zol, (5)
(1}

1 G. H. Hardy, Divergent Series (Oxford, Clarendon Press, 1949).

and

lg@®)l < e, forevery > f,. 6)

We have by (2) and (5):

ty
f Ik(z, Dg(d) dt < <+ sup |g(0),
0 0<t{<m

for z,lz] > |zol, (7

and by (1) and (6):
f "Iz, g0 dt < e f *|k(z, o)l dt
to to

< e sup f Iz, 01 dt. (®)

2e8

The conclusion (4) follows from (7) and (8).

In the following we shall always denote by S a
sector defined by |argz| < = — , where # > 8 > 0.

Using the previous lemma we can now establish
the following theorem.

Theorem 1: Let g(t) be an integrable function in the
ordinary sense in any finite interval. If

f(Z) DER J:O gz(:)-dtt

converges for a point z = z, which is not on the
negative real axis and if 1 > « > 0, then

1*g(0) 77 { = 2% (2) — =/[sin (am),

t—w

®

zeS and |z] > 0. (10)

Proof: Using a theorem due to Widder,? stating
that if the integral (9) converges for a point z = z,
not on the negative real axis, then

fo gy du = o(t) (1 o),

2D. V. Widder, The Laplace Transform (Princeton University
Press, Princeton, N.J., fifth printing, 1959).
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we find by integration by parts that

, ® G
zZ) = ——dt, z€S§, 11
/(2 0 Gt D (11)
where
12
G() =f gu)du, t2>0.
0
Writing
t
*7G(1) = t“”‘f u™ug(u) du,
0
and using the regularity of the kernel
a—1, —a
a(t,u)={t u™®, t>u>0,
0, u>t,
for « < 1, we get
fg() > =6 > {1 — o), t— 0. (12)
By (11) we have
2% (z) = f k(z, HG(t) - 7 dt,
where ’
k(z, ) = 2" %)(z + )% (13)

The kernel (13) is regular for z € Sand 1 > o« > 0.
Indeed,

fk(z,t)dt:ﬂ———i), zeS and 0<a<1,
0

sin (7o) (4
1

(see, for example, Ref. 3) and therefore the kernel (13)
satisfies (3).

By (14) it follows that (13) also satisfies (1) for every
positive value of z. On the other hand, denoting by
x and y the real and imaginary parts of z, we have for

y#0:

L2 © e __m sin{(l —«)argz}
oz 41 sin (o) sin (arg z) '
(15)
(See, for example, Ref. 4.)
From (15) it follows that
0 tl—a
z|® dt = 0(1),
"Lu+n“ W
y#0, zeS and |z] > 0.

Finally, it is easily seen that (13) satisfies (2) for
z> 0, and y # 0; we have
o 4l . to dt
z|* dt L |z|* 7 ———;
"L|z+t12 ol o (1 +x)° +y*
_

L8 . arctan (—é&)
y 4+ x- 1

=0(I Ilz_a), zeS and |z]— o,
y4

3W. Grobner and N. Hofreiter, Integraltafel, Zweiter Teil:
Bestimmte Integrale (Springer-Verlag, Wien, 1966), p. 177.
4 Reference 3, p. 184.
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Hence the kernel (13) satisfies the three conditions
of the previous lemma and is therefore regular. It
follows that

PG ——> [l — @) = 29(2) > —
~ e sin (o)
for zeS, |z]—> 00, and 1> a>0.

The conclusion (10) follows from the last relation
and from (12).

Theorem 2: o = 1.
If
° g(®)
=| 8L ar
f(2) Lz+t

converges for a point z = z, not on the real negative
axis, then

tegt)—>0=FLE o,
Ll log z
for zeS and |z] > oo
Proof: Let t, > 0 and
v = a0 de, x>0
Integration by parts yields
7
_ [ g dt f‘” g(t) dt
/@ J;) Z+t+ te zZ+1t
1
° g(t) dt to *® w(t) dt
=| === 4 —— y(t S
J; z+t +z+t0w(°)+z t (z + 1)
_ L [Cr@a +0(i),
to (Z + t)2 |Zl
for z€S and |z]— o0.

g(t) = 0(%) = (t) = o(tl), t — o0,

it is enough to show that, for any finite number
t, > 0, we have

zfm dt _ O(log[zl)’
wtlz 4 t)? |z|

for zeS and

|z] — oo,

The last relation is checked by integration.

Theorem 3: o = 0.
If the integral (9) converges for a point z = z, not on
the negative real axis, then

f(2) >0,

for zeS and |z]—> 0. (16)
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Proof: The proof is similar to that of Widder’s for a
real variable z (see Ref. 5). In fact, using the auxiliary
function

I <))
H(t)_Ll_l_udu (t>0),
we obtain by integration by parts
1+t
@) = f -
=M+ - )f Hya d‘ .an

As H(1) e f() [see Eq. (9)], we have by the
regularity of the kernel

z
k(Z, t) - (Z + t)ga s
© H(t) dt -0 1 18
v =) )
and
*® H(t) dt - .
\ _—_(z+t)2 f), for zeS and [z[ > oo.
(19)

The conclusion (16) follows now from (17) to (19).

5 Reference 2, p. 333.
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Theorem 4: a. > 1.

Let g(7) be an integrable function in the ordinary
sense in any finite interval, and let o« > 1.

if

g(t) = o(t™), t— oo, (20)
then

lim {zf(z)} = f " o) dt,

lz]~ o0 0

ZE€

where f(z) is defined by (9).
Proof: As

g = 20

z+t

) g(t) +z

we have

f‘*’tg(t)dt
0 z+t

and it is sufficient to show that

h(z) Dgf UL
0 z 4t

exists for z€ S and tends to zero, then |z] — co.
Since by (20), h(z) exists for such values of z, the
conclusion follows from Theorem 3 applied to the
function A(z).

=fwg(t) dt — zf(z), z €S,
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We treat the Bethe-Salpeter equation as a problem in singular integral equations. As such, it has three
outstanding features: its algebraic structure, the fixed propagator singularities in the direct channel, and
the possible singularities in the potential, which are usually moving singularities. We exploit the algebraic
structure in order to give insight into the possible correctness classes for the equation. We give explicit
prescriptions for the removal of fixed singularities in a wide class of equations. We show under what
circumstances these prescriptions can be adapted to maintain such desirable features as symmetry of the
kernel. Moving singularities arise in physically realistic kernels; they are the crossed-channel singularities.
The basic mathematics of such singularities is well known and is related to the Riemann-Hilbert problem,
but this is useless in off-shell methods because it cannot cope with the integration over the space parts
of 4-momenta. Instead, we adopt a method (proposed by one of us elsewhere) based on analyticity in
energy variables. The resulting formalism is too complicated to be applied in full generality. We there-
fore consider the example of the single-particle exchange potential in detail, and show how the moving
singularities can be eliminated, exhibiting the resulting equations explicitly in a form to which our theory

of fixed singularities can immediately be applied. All our arguments are exact.

1. INTRODUCTION
1.1. Summary and Review of Previous Work
The Bethe-Salpeter equation! is essentially a linear
off-shell equation for the (two-body) T matrix:
T=V+ VGT, (1.1)
where V is a “potential” and G is a given Green’s
function. The potential V" may be given, or may be an
unknown determined by a further equation. Equations
of the general form (1.1) arise in several ways: from
attempts to sum various classes of perturbation
diagrams,?! for instance, in the ladder or single-particle
exchange approximation

V=I,

or in quantum electrodynamics.? In a general Green’s
function treatment of quantum field theory,® such an
equation as

O - GO

(1.3)

of the precise form (1.1), arises through considerations

(1.2)

* Present address: Magdalen College, Oxford, England.

t Present address: Physics Department, Queen Mary College,
London, England.

Y. Nambu, Progr. Theoret. Phys. (Kyoto) 5, 614 (1950); M.
Gell-Mann and F. E. Low, Phys. Rev. 84, 350 (1951); E. E.
Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951); J. Schwinger,
Proc. Natl. Acad. Sci. U.S. 37, 452, 455 (1951).

2 K. Johnson, M. Baker, and R. S. Willey, Phys. Rev. 136, B1111
(1965); R. S. Willey, Phys. Rev. 153, 1364 (1967). Earlier references
are given in the first paper of Ref. 11 below.

3 J. G. Taylor, Nuovo Cimento Suppl. 1, 857 (1963).
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of charge renormalization, the object
V= , (1.4
s

acting as a potential. By this we mean that if one wants
to obtain approximate equations reflecting, say,
dominance of single-particle exchange in a crossed
channel, one again substitutes (1.2). This single-
particle (or its generalization to many-particle) ex-
change contribution to ¥ may also be used to obtain
a bootstrap structure.*~¢ In general, Eq. (1.3) is the
expression of complete unitarity in the direct channel.?

Equations like (1.1) also arise” from the separable
approximation to a relativistic generalization® of the
Faddeev equations.®

Attempts at exact numerical calculations have been
made in the ladder approximation for bound states,®

¢ M. M. Broido and J. G. Taylor, Phys. Rev. 147, 993 (1966).

5 Reference 3, p. 1026; Ref. 4, p. 1006; W. Giittinger, Nuovo
Cimento 36, 968 (1965); T. Yoshimura, Nuovo Cimento 39, 984
(1965); S. N. Biswasand L. A. P. Balazs, Phys. Rev. 156, 1511 (1967);
D. Bondyopadhyay, S. N. Biswas, and R. P. Saxena, Phys. Rev. 160,
1272 (1967).

6 M. M. Broido, J. Math. Phys. 6, 1702 (1965).

? H. Cohen, A. Pagnamenta, and J. G. Taylor (unpublished).

8 J. G. Taylor, Phys. Rev. 150, 1321 (1966).

9 L. D. Faddeev, Quantum Theory of Scattering for 3-particle
Systems, A.E.R.E. Harwell translation, 1964 (unpublished) and ref-
erences quoted there.

10 C. Schwartz, Phys. Rev. 137, B717 (1965). In the quark model,
with scalar mesons as bound states of scalar quarks, the bound-
state Bethe—Salpeter calculation of D. Holdsworth has shed light
on the nature of the quark—quark interaction; see comments by
R. H. Dalitz in Proceedings of the XIII’th International Conference
on High Energy Physics, Berkeley 1966 (University of California
Press, Berkeley, 1967).
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elastic-region phase shifts,'* and for the region between
the first and second inelastic thresholds.!? Also in the
ladder approximation, calculations have been per-
formed with approximate kernels.'* In the form
arising from the relativistic Faddeev equations,
approximate calculations have also been carried out.
Padé approximants have been applied to the com-
putation problem.'**

The Bethe-Salpeter equation may be considered
either in differential or integral form. As a differential
equation it is of fourth order, but the boundary
conditions in the bound-state problem are simple
enough that it is worth using for bound-state compu-
tations.’® Some progress has also been made towards
a general analytic discussion of the differential
equation in the Riemannian formulation of the bound-
ary-value problem,' but this formulation does not
help to elucidate the bound-state structure. We prefer
to treat the momentum-space integral equation for
two reasons. First of all, it is most closely related to
the physical interpretation; it is easiest for considering
the role of unitarity. Secondly, the Bethe-Salpeter
equation is, after all, only the lowest of a hierarchy of
Green’s function equations? describing the momentum-
space structure of multiparticle processes, and our
eventual hope must be to devise methods for dealing
with all of these. From now on, whenever we use the
phrase ‘““‘Bethe-Salpeter equation,” we will mean the
momentum-space integral equation.

Experience indicates that there are two main
difficulties in using the BS equation:

(1) singularities in the Green’s function G;
(2) singularities in the kernel V.

Since the natural method of dealing with any sin-
gular integral equation is to reduce it to a Fredholm
equation, there will be the following further features to
consider:

(3) the special algebraic structure of the equation;
(4) the need in certain discussions to have kernels

11 C. Schwartz and C. Zemach, Phys. Rev. 141, 1454 (1966); R. W,
Haymaker, Phys. Rev. Letters 18, 968 (1967).

12 M. Levine, J. Tjon, and J. Wright, Phys. Rev. Letters 16, 962
(1966); Phys. Rev. 154, 1433 (1967). These authors have also shown
[Phys. Rev. 157, 1416 (1967)] that an ansatz for the complete
propagator improves the unitarity behavior between the three-
body and four-body thresholds; see also R. M. Saenger, Phys. Rev.
159, 1433 (1967). Although we do not consider using a complete
propagator in this paper, we observe that this type of ansatz can
very easily be included into the general methods we discuss.

13 R, Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966).

14 See Ref. 7 and also H. Cohen, A. Pagnamenta and J. G. Taylor,
Nuovo Cimento 50, 586 (1967).

142 R, W. Haymaker, Phys. Rev. 165, 1790 (1968).

14b J, Honerkamp, ‘LOsung der Bethe-Salpeter-Gleiching mit Hilfe
der Riemann’schen Methode,”” Institut fiir Theoretische Physik,
Hamburg preprint, 1967.
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representing Hermitian operators, and related features
involving the Feynman iein the singular denominators.

Before we embark on a detailed treatment of the
equation, let us outline the effects of these four
features.

In practice, one is always considering a two-
particle BS equation in which the Green’s function
is the product of two propagators, usually free. This
is the case at which most of the work in this paper is
aimed. The removal of the direct-channel propagator
singularities, then, is a general problem concerning
many classes of Bethe-Salpeter equation. It has been
considered by one of us elsewhere®® by a kind of
Taylor expansion about the mass shell (a more
sophisticated form of subtraction method). In this
paper we use a different, more general expansion
method.

There exists a further general method for the re-
moval of singularities, that of analytic continuation
in the energy variables (“generalized Wick rota-
tions’).18:17 We use that method here for the removal
of moving singularities.

The removal of singularities in the kernel V is
important for computation and for physical argument,
but it is not such a general problem. It has been
considered generally in connection with the removal
of propagator singularities by generalized Wick
rotations'® and specifically, for computational reasons,
in many of the above-mentioned papers.

We note that the general problem of the removal
of fixed singularities from integral equations does not
seem to have received any attention in the mathemat-
ical literature. For instance, the book of Mus-
khelishvili** considers only singular integrals of the

type

f K, nf(y) . (1.5)

X—=y
related to the Riemann-Hilbert problem in analytic
function theory. For this reason and others which we
discuss below, we will be able to make scarcely any use
of the classical literature on singular integral equations.
The purpose of this paper is to give a general account
of the methods by which a BS equation may be

1> See paper 5 of Ref. 3.

18 3. G. Taylor, Phys. Rev. 136, B1134 (1964).

17 This energy-analytic representation has been applied to the
Green’s function equations describing many-particle scattering
and production processes by J. G. Taylor, Boulder Summer [nstitute
Lectures 1966, M. Guenin, ed. (Gordon and Breach Science Pub-
lishers, Inc., New York, 1967). It has been used to discuss the 3P,
state of nucleon-nucleon scattering by H. lto et al., Progr. Theoret.
Phys. (Kyoto) 37, 372 (1967).

18 A. Pagnamenta and J. G. Taylor, Phys. Rev. Letters 17, 218
(1966).

» N. [. Muskhelishvili, Singular Integral Equations (Moscow,
1946) [(English translation: Noordhoff, Groningen, 1953)].
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reduced to the standard Fredholm form, having regard
to the features (1)-(4) mentioned above. The organi-
zation of the paper is as follows:

Algebraic generalities concerning the BS equation
are dealt with in subsection 1.2. We will see that
they have a considerable effect on the choice of
possible correctness classes (which are classes of
functions in which the problem of solving the BS
equation is correctly posed, i.e., makes sense).

The connection between unitarity and the reality
of the eigenvalues of the kernel is discussed in sub-
section 1.3.

In Sec. 2 we give detailed prescriptions for removing
fixed singularities from the kernels of integral equa-
tions. These prescriptions apply to a far wider class of
equations than the BS equation, and they are presented
with appropriate generality. They are essentially
algebraic in nature; nevertheless, the resulting
singularity free integral equations must satisfy certain
well-known analytic conditions in order that Fredholm
theory may apply, and these are reflected in certain
continuity and integrability conditions on the objects
appearing in the original equations.

In Sec. 3, these methods are applied to a study of
the general field-theoretic BS equation (1.3) in the
case where the potential V' does not have crossed-
channel singularities. Our methods succeed in re-
moving the singularities. This can be done in such a
way as to preserve the symmetry property required
for the analysis of more complex problems (see Ref.
6), but we do not pursue this topic here,

Realistic problems will have, in addition, crossed-
channel singularities. These give rise to moving
singularities which cannot be dealt with directly by
the methods of Sec. 2. The classical methods asso-
ciated with the expression (1.5) are useless for ele-
mentary particle physics because they cannot take
into account the integration over the space com-
ponents. For this reason we present, in Sec. 4, an
appropriate version of the method of generalized
Wick rotations. We cannot hope to give a completely
general account of the application of this method to
the BS equation; the situation is too complicated.
But, in Sec. 5, we do present a complete and explicit
treatment of the one-particle exchange problem [Eq.
(1.2)], showing how the generalized Wick rotation
does remove the moving singularity, and we exhibit
the equation in a form to which the considerations of
Sec. 2 apply. Although we do not attempt numerical
computation in the present paper, this treatment
shows transparently enough how all the technical
problems encountered in earlier work can be overcome

M. M. BROIDO AND J. G. TAYLOR

without making further approximations (i.e., beyond
the one-particle exchange approximation). The gener-
alization to the simultaneous exchange of several
particles is too complex to give here, but presents no
new difficulties of principle. Since other contributions
to the “exchange potential” are likely to be less
singular than these, we have actually shown how to
deal with a very large class of potentials. In other
words, the one-particle exchange gives the “dominant”
part of the potential in the sense of Muskhelishvili.'?

The following problems are not treated in this
paper: computational problems per se; pole structure
and renormalization of the equation; the generaliza-
tion to systems with spin; the problem of determining
the “potential” (beyond the one-particle exchange
approximation).

1.2. Algebraic Generalities

Elsewhere®® one of us has dealt quite generally
with the algebraic properties of the BS equation. By
using properties of certain types of BS equations, this
discussion can be taken further. In the case where the
T and V of (1.1) are in some sense drawn from the
same class E, [e.g., of four-point functions, in the case
of Eq. (1.3)], the mapping

(T, V)— VGT,

gives rise to a multiplication on Ey.2' This E; will
clearly become a ring, and indeed in all physical cases,
an algebra (over the complex numbers). Suppose we
denote the multiplication by *. Then (1.1) is equiv-
alent to

T—-V—-Vx*T=0, (1.6)
so that T and —V are quasi-inverses for =. If we add
an identity / to E,, we can put

-+ T)=1, (1.7
so that I — Vis a left inverse of I 4+ T; if * is a com-
mutative multiplication, i.e., V « T = T = V, as is the
case with Eq. (1.3), then / — V and I 4 T are simply
inverses and we can solve (1.1) unambiguously in the
form

T=(-V)y1-1 (1.8)

It should be emphasized that this is a rigorous,
uniquely defined procedure, not merely a formal
hand-waving. Of course, it will be difficult to compute
explicitly the expressions we have just written down.
This is why we wish to remove the singularities:
Fredholm theory then gives us a comparatively explicit
method for this computation. Moreover, we wish to

20 M. M. Broido, “Equations which are Relations on an Algebraic

Structure” (unpublished).
21 E, is what we called the solution class in Ref. 20.
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do this in such a way as to preserve these desirable
algebraic properties. We do not know of any existing
treatment of the BS equation where this happens.

Abstractly, the problem in the commutative case is
to show that one of the factors on the left-hand side
of (1.7) which is given, possesses an inverse in E,. The
existence of this inverse is thus a necessary and sufficient
condition for the existence and uniqueness of the
solution to the original BS equation.

In the noncommutative case, the most general
necessary condition for existence on Eq. (1.7) is the
existence of the appropriate one-sided inverse. One-
sided inverses are not unique in general, so this will
not give a uniqueness theorem.

The most important physical examples are com-
mutative [e.g., Eq. (1.3)].

The most general Fredholm equations are of the
form

a=>b+4 Ka, (1.9)
A= B+ KA, (1.10)

where K is a given completely continuous linear
operator on a Hilbert space, b (B) a given vector
(operator), and @ (A4) an unknown vector (operator).
Then if I — K is invertible, the solutions are
a=(— Ky, (1.11)
A= (U~ K)B (1.12)

Otherwise we have the Fredholm alternative for
appropriate b,B (at least in the case of Hermitian
K); this alternative is not, in general, unique. We note
that the Fredholm alternative is obtained by consider-
ing the inversion of (/ — K) in a certain subspace of
the original Hilbert space, so in the case of (1.10), it can
be regarded as arising from a different choice of E,.

Equation (1.10) with B = K has the same algebraic
structure as the BS equation. The Fredholm alternative
is irrelevant in this case. On the other hand, we see
that the condition B = K has nothing to do with the
basic form of the solution when we write it by Eq.
(1.12). Thus we can afford to transform (1.6) into the
apparently less favorable form (1.10), provided we
maintain the invertibility.

The discussion we have given so far assumes that
the operation is defined for any two members of the
solution class £,, and leads to another member of this
class. This assumption is somewhat stronger than
what one most obviously requires (namely, that the
product ¥ x T is defined). One can imagine slightly
less restrictive conditions—for instance, that E; is a
given vector space, but that the product V « T is
defined for all T € E; only when V is restricted to
some subset E; < Ej (say). This is the situation which
arises when one tries to iterate the first-order per-

187

turbation term in the Green’s function equations of
field theory.® In this situation, the class E, is usually
an algebra. Clearly, if we seek a solution with ¥V in
E, but Tnotin E,, neither can V' * T bein E, . Analysis
of special cases of some physical interest®? suggests
that this apparent generalization will not lead to
anything new.

We also see that our above assumptions arose be-
cause, having an equation with an algebraic multi-
plication operation in it, we considered correctness
classes which are rings of functions rather than rings
of operators. We can finally end up with the multi-
plicative structure of a ring of operators. For this
reason it seems to us that the use of algebraic struc-
tures of double internal composition (rings, algebras)
is quite essential in any deeper study of the BS
equation.

The argument which we have given so far assumed
that the multiplication * is fixed once and for all.
Although we will not consider this in the present
paper, we observe that it may be convenient to change
the form of multiplication by absorbing parts of the
Green’s function G into the kernel or otherwise. In
this way, one may be able to cause a damping in TGV
to become apparent, or to achieve other desirable
results. Such a procedure is used in connection with
the Lippmann-Schwinger equation for singular
potentials elsewhere.2t

1.3. Reality of Eigenvalues and the Feynman ie
Prescription

In this subsection we review, in a thoroughly
intuitive way, the connection between the require-
ments of Fredholm theory (particularly hermiticity of
the operators represented by the potential ¥ and the
scattering amplitude 7'), and the use of the Feynman /e
prescription in the propagators. Since these arguments
are essentially of a physical nature, we present
them specifically in terms of the physical problem,
Eq. (1.3). We denote the four-momentum in the
direct channel by p, s = p?, p = (p.p.ps). The con-
volutive multiplication in (1.3) does not involve the
variable s, so we may write

T(s) = V(s) + p()[V(s) * T(s)], (1.13)
where p(s) is a kinematic factor which will, in general,
contain a multiplicative (coupling) constant. Thus,

in addition to the general algebraic considerations of
the previous subsection, we must consider what is the

2% See Ref. 3, paper 4.

28 1t will be found helpful to compare this discussion with the
more general one given in Ref. 20. Although arguments pertaining
to the BS equation are given in Ref. 20, those of the present paper
go much further.

24 H. H. Aly and J. G. Taylor, J. Math. Phys. (to be published).
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effect of the s-dependence made explicit in Eq. (1.13)
and, in particular, of the kinematic factor p(s).

In general, there will be values s" of s for which
A= [p(s)]™* is an eigenvalue of the operator V.
Under these circumstances, the algebraic arguments
of the previous subsection show that (1.13) cannot
have a solution as it stands. What happens physically
is, of course, well-known; we have a bound state in
the direct channel. Mathematically, this is expressed
by the existence of an eigenvector T(s"):

V(s) = T(s") = AT(s"). (1.14)
In general terms, the compactness of the operator
V(s) is enough to ensure the existence of this eigen-
vector, because a compact operator has only isolated
spectral points (apart perhaps from zero, i.e., apart
from the singularities of the kinematic factor), and
these are necessarily eigenvalues. How does one
reconcile this with Eq. (1.13)? The answer is again
well known: there must be a pole in T(s) which makes
the V(s) term by itself negligible. We casily convince
ourselves that there is no other possibility. Thus for
these exceptional values of s, the original Bethe-
Salpeter structure disappears; the equation becomes
homogeneous. This, of course, is exactly the condition
for a bound state. In the center-of-mass system, we
will have (s)} = p, = u, say, which will give us the
mass of the bound state.

Let m denote the mass of the incoming particles
(the argument is easily generalized to particles with
different masses). Then, for p, < 2m, the Feynman ie
in the intermediate propagators does not contribute.
Hence we are dealing with a real integral equation
and the eigenvalues must be real. On the other hand,
for p, > 2m, there can be no eigenvalues, as is well
known; for they would contradict unitarity. (Suppose
we had an S-wave pole. We have

T L

Po— M
_r
|po — pl* ’
Im T~ T'é(py — 1),

contradicting the unitarity requirement Im T = |T|%)
Thus we have shown that the Feynman ie will not
interfere with the reality of the spectrum of V.

Compactness is not strictly necessary in the above
argument. What concerns us is the point nature of
the spectrum. But in this type of problem we normally
handle square-summable functions (Sec. 2) which
automatically give rise to compact operators. Let us
briefly consider what kind of kernels give rise to
operators which are continuous, but not completely

IT|* ~

M. M. BROIDO AND J. G, TAYLOR

continuous. By standard techniques of Fourier anal-
ysis, we can reduce this problem to that of double
sequences {a;;}. Square-summability of the kernel
corresponds to 3, |a;,|2 < co. For continuity,

sup 3 la,|* < oo,
i i

is necessary and sufficient. Unfortunately, the latter
condition is inconveniently asymmetric and does not
seem to have any simple interpretation in terms of the
original kernel.

To get a Hermitian operator out is much more
difficult. The only general condition which we can
exploit is the symmetry of T in all variables (which
arises from field theory). Unfortunately, this does not
correspond to hermiticity in the normal Hilbert space
sense, which requires rather a property of the form
U(x, y) = U(y, x) (the bar denotes complex conjuga-
tion). We discuss this problem in more detail in
Sec. 3.

1.4. Continuity Conditions

A function ¢(x) of a single real variable is said to
satisfy the Holder condition H(u) if, for some constant
C,

[d(x;) — d(xo) < Clxy — x,l,

for all x;, x,. In the case of moving singularities (1.5),
such conditions have to be applied over the whole
range of x.'* We will be dealing largely with fixed
“propagator” singularities at x = a (say), and will
impose Holder conditions only in some neighborhood
of this point in such cases (even where not explicitly
stated). In the case of functions of two (or more)
variables, we can talk about a Holder condition
H(p, v), say, corresponding to

[ (x1s y1) — H(xz, o) < C|x; — x5/* + D |y, — y,l",

and so forth. In this paper, functions of several
variables will, in general, be required to satisfy
Holder conditions in each variable separately (in
some neighborhood of some fixed point) and also
higher-order Holder conditions where several vari-
ables are all near their singular points. The precise
Hélder conditions to be used will generally be obvious,
but will be spelled out in detail if they are not.

2. SOME CLASSES OF SINGULARITY-
REMOVING TRANSFORMATIONS

2.1. Functions of a Single Variable

In this subsection we will consider how to remove
the singularity from such an integral equation as

() = g(x) + j 5%”_‘”

) (2.1
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(in this and similar equations we will uniformly add
+ie to the denominator if necessary), where f and g
are functions of a single variable x. We wish, then to
reduce Eq. (2.1) to the form

£ = g + j K )fDdy,  (2.2)

where the kernel K'is to be sufficiently smooth that the
standard Fredholm techniques can be applied. One
of us has discussed this problem elsewhere'® and has
pointed out that the essential step is to expand the
functions about the singular point x = a. Previously'®
we simply took the Taylor expansion of f(x)

f) =f@+ (x— a)f' ),

and showed that the reduction can indeed be accom-
plished by putting

(2.3)

- 1 - KO(X) _ ’
g(x) = 1~ Kya) gla) + (x — a)g'(x), (2.4)
and
_ 1— KO(X) _ ’
K(x’ y) - 1 _ Ko(a) K(a’ y) + (x a)K (X, ,V),

(2.5)

where
Ky(x) = f K. 9) 4. (2.6)

y—a

Such a treatment is perfectly sufficient for simple
linear Bethe-Salpeter equations with given kernel
K(x, y). However, the transformation absorbs the
singularity entirely into the unknown function f(x)
[since (2.5) transforms K(x,y) only in the first
variable, which is not integrated over in (2.1)]. As
we discussed in a general way in the Introduction,
this feature makes it impossible to generalize the
transformation (2.3)-(2.6) to such an equation
(““equation in kernel functions’) as

fx9) = g(x y) + f —@—zzl{_(z—y)i’—z @.7)

without introducing an asymmetry between the two
variables, which makes it very difficult to see what is
going on. The problem of a consistent removal of
singularities from singular integral equations is certain
to be an important one also in a general Green’s
function treatment of quantum field theory.? For these
reasons we will consider from the outset a more
symmetrical class of transformations. In order to
maintain a reasonable balance between simplicity and
generality, we will return to the form (2.1) and will
consider the following rather general transformation
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of the functions appearing in it:
&) = FX)f@) + (x — ¥ '(x),
g(x) = G(x)g(@ + (x — ag' (), 29

K(x9 y) = Kl(x)K(aa y) + K(x9 a)KZ(y)
— K,(0)K,()K(a, @) + (x — )¥(y — DK (x, ).

By retaining different functions F(x), G(x), K;(x),
K,(x), we have still not achieved complete symmetry;
but by using square roots we have “divided” the
singularity between the two functions under the
integral sign in (2.1). We could have achieved a little
more generality by using arbitrary smooth functions
having x¥-type zeros at x = a, and obtained some
damping of the resulting integrals; this generalization
is easily made when necessary and we will not pursue
it in detail. The retention of four different transforma-
tion functions will clarify the origin of various cancel-
lations which occur and, as we will see, will have other
valuable features which justify the extra complication
of the treatment.

Notice that if the singularity is to be effectively
removed by the transformation (2.8), we must require
that

lim F(x) = lim G(x) = lim K,(x) = lim Ky(x) = 1,

r—a Tr—a xr—a x—a
(2.9)

and that, around x = 4, continuity conditions of the
Holder type (Sec. 1.4) apply, to which we return
later.

When (2.9) holds, separate first-order variations in
the independent variables are taken care of by cancel-
lation between pairs of the terms in the expansion for
K(x, y).

In attempting to obtain Eq. (2.2), we will wish to
evaluate the integral

1K', /] = f K nf'G)dy,  (2.10)

which will be aided by a general notation for singular
integrals:

P(x, NO(y, 2) = f P(_x%;Ldy

(2.11)

We obtain
(x — a¥I[K", f']
= K(x, f) — K(x, WF()f(a)
— Ki(0)K(a, ) f(») + Ki(x)K(a, WF()f (@)
— K(x, K0 Q) + K(x, )K,()F(y) f (@)
+ K, ()K(Nf()K(a, @)

— Ki()K(MF(y) f(@)K(a, a). (2.12)
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We want this to be equal to the expression
O — (') — g'(x)
= /() — g(x) — (F(x)f(@) — G(x)g(@). (2.13)
It would be too complicated to discuss the most
general way in which this could happen. However,
we note that even without using Eq. (2.1), the last six

terms cancel in horizontal pairs if we impose these
simple restrictions on the transformation functions:

K(a, ))f() = K(a, HFO) f(a),

K.Mf(G) = K(WF)) fa), (2.14)
which we will do from now on. In this case the use of
(2.1) gives

x — MK, ['] = f(x) = g(x) — K(x, DFO)f @).
(2.15)
In order for (2.2) to hold, this must be equal to
(x — DHS'(0) — g'(3)
= f(x) — g(x) — F(x)f(a) + G(x)g(a).
so that we want Fand G to satisfy the integral equation
F)f(a) = G(x)g(@) + f(@K(x, F(y). (2.16)
At x = a, this reads
f@) = g@ + f@K@, NFy),  @2.17)
whereas the original equation (2.1) reads, at x = a,

(@) = g(@) + K(a, )F() (2.18)
= g(a) + f(a)K(a, y)F(y) +f w dy.

(y —a)
(2.19)

In order that (2.17) and (2.19) shall be consistent, we
must have

f K(a, »)f (y; v _ o (2.20)
(y—a)

Once we have ensured (2.20), the first cancellation

condition of (2.14) will hold, provided that Eq. (2.1)

holds at x = a. We will show later how to ensure

(2.20). Then we can calculate f(a) by (2.17). Having

done this, we can calculate a G(x) satisfying (2.16),

with G(a) = 1, by

F(x) — K(x, y)F(y).

G(x) = = (2.21)
1 — K(a, y)F(y)
Similarly, for any K, of the form

K'(D)K(z, a)’

the second of the cancellation conditions (2.14),
together with (2.1) (this time for all x), is equivalent to

f KWf'Wdy _

(2.23)
(v —a)

M. M. BROIDO AND J. G. TAYLOR

These considerations may be summed up in the
following:

Theorem 1: Provided suitable summability and
continuity conditions hold, the transformation (2.8)
may be used to reduce the singular integral equation
(2.1) to the Fredholm form (2.2) in which the singu-
larity is absent. We must pick F so that the conditions
(2.9) and (2.20) hold, and must define G by (2.21);
K, and K are arbitrary, except that F, G, K, and K,
must satisfy (2.9).

Theorems of this kind establish a correspondence
between the original singular equation [such as
(2.1)] and a certain class of Fredholm equations of the
form (2.2). In order to make this correspondence more
precise, we may try to answer the following questions:

A. Which of the functions F, G, K;, K, can be
chosen arbitrarily, and how must the others be
specified, in order to set up an equivalence between
the singular equation (2.1) and the Fredholm equation
(2.2)?

B. Assuming now that the equivalence has been
set up for one choice of arbitrary functions and that
the Fredholm equation then has a unique solution
(so that the singular equation has a well-defined
solution), do we get the same solution to the singular
equation by taking a different choice of the arbitrary
functions permissible under A above?

In order to get an existence theorem for the equa-
tion, it is sufficient to give one (perhaps) special
answer to question A, for this reduces the existence
problem to that for Fredholm kernels, which is well-
understood. If for some particular choice of X, and
K, the operator-kernel (1 — K') is invertible, the
answer to problem A will furnish us with a solution
to the singular integral equation. If for this particular
choice of K; and K,, (I — K') is not invertible, we
may still consider whether it might be invertible for
another choice of K, and K,. Thus this method is
capable of yielding an existence theorem, but not (at
least in its present form) a precise nonexistence
theorem.

Furthermore, it may be that the Fredholm equation
has solutions, but that these are not unique. Now this
can only happen if the homogeneous Fredholm
equation has a solution. In the Bethe-Salpeter equa-
tion, we expect this situation to arise where there are
bound states and resonances. Naturally, if the homo-
geneous Fredholm equation does have a solution, we
will want to inquire whether this could give rise to a
solution of the inhomogeneous singular equation. In
our symbols, can we have g’ = 0 but g # 0? We
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cannot answer this question in full generality; but it
is clear that such a situation cannot arise through the
cancellation of the last six terms of (2.12). For now
(2.16) is, for all practical purposes, equivalent to the
original integral equation—instead of computing
G(x) from it, we must compute F(x) from it. In other
words, the expansion (2.8) has not simplified the
problem. For the moment we assume that this oddity
can be ignored.

These remarks should be taken as a guide to what
can reasonably be expected of the present method.
From now on we will restrict ourselves to the choice

K;(x) = K(a, x)[K(a, a). (2.24)
This is motivated partly by features of the two-
dimensional case which we will observe in the next
subsection. At the cost of abandoning any choice in
the kernel K’, it simplifies the expansion of K to
K(x, a)K(a, y)
K(a, a)
+(x — af(y — *K'(x, ). (225
It also simplifies the two cancellation conditions,
making them equivalent. Thus we have no need to
refer further to (2.23).

The task of dealing with problem A [within the
limits of (2.24)] has now been reduced to showing
how F(x) can be used to ensure that (2.20) holds.
For this purpose we take any function H(x), vanishing
at x = g, and define

Flu,x) =14 u(x — a) + H(x). (2.26)
Now we suppose that (1 — K') has an inverse, without
which, as we remarked earlier, we cannot hope to get
any definite result at all. Under these circumstances,
by defining a “trial” G by
F(u, x) — K(x, y)F(u, y)

1 — K(a, y)F(u, y)
we obtain a ‘“‘trial” g’(u, y) by

g'u, x) = (x — DG, x)g(a) — g(x)], (2.28)
giving a “trial” f'(x) by

F1x) = f (1 ~ K, y)g'(u, ) dy.

K(x, y) =

G(u, x) =

. (227
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Now we can consider the expression
K(a, p)1 — K')(y, x)g'(u, x) dy dx
-t

£(u) is a well-defined, fractional-linear function of u—
say

£(u) =

(2.29)

_A+Bu
C+ Du’

Thus the equation £(u) =0 will have a unique
solution u,, say (provided B # 0—this is not difficult
to ensure); and so if we define F(x) by

F(x) = F(u,, x), (2.31)
condition (2.20) holds and so the cancellation con-
ditions (2.14) hold.

This completes the proof of the existence theorem
for the singular equatiori when the Fredholm kernel
K’, given by (2.25), is such that (1 — K’) is invertible.

We have shown that F(x) still contains the arbitrary
component H(x) [in Eq. (2.26)]. The form of unique-
ness problem set up under B above may now be
formulated more precisely:

Suppose we take two different functions H;(x) and
H,(x), giving solutions u, , and u, , of (2.30), etc., and
calculate solutions f1(x), f2(x) of the singular equation.
Are these solutions identical?

We will now show, under the same assumptions as
before, that they are indeed identical. Thus the
arbitrariness of H does not lead to any lack of unique-
ness of the solution.

We will do this by calculating the expression
(1 — K')f~, where

)=

Indeed, writing
F(x) = Fy(x)fi(a) — Fi(x)fz(a)

(x —a)
and using the fact that f] and f, solve the Fredholm

equations, we have

(1= K)f~=(1—K)F +g —gi. (234)
The right-hand side of (2.34) can be calculated ex-
plicitly. By using the expansions of g and K, we get

L(u) (2.30)

Si(x) — fo(x) .

e (2.32)

, (233

| B )s0@) — Fis@ndy
v —a) (
(e oy} =77 _ K(x,a) —— _ Sty _ K(x, a) —;
x — a) {[K(x, IO = o K(a,y)Fl(y)]fm [K(x, PFO) = 1 8 K(a,y)Fz(y)}fxa)}

and

g1(x) — gox) = — s o)

g(a) {FI(X) — K(x, Y)Fi(y) _ Fy(x) — K(x, y)Fs(y)
1 — K(a, y)Fy(y)

1 — K(a, y)Fo(y) }
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We see that almost everything cancels to give

(1 = k)= = KB 51 50) — fgal
K(a, a)

Now we argue that, since (1 — K') is invertible,
(1 = K')f~ =0 is equivalent to f~ = 0 (which is
what we want to prove). Thus we only have to show
that f,(a) = f:(a). But f;(x) and f,(x) are, by construc-
tion, solutions of (2.1). We can expand f,(x) by using
F, (rather than F,). From the construction of F;, the
condition (2.20) holds. But it is now equivalent to
fo(@) = g(@)[1 — K(a, p)F, (NI, i.e., to precisely the
expression used to calculate f;(¢) [compare (2.16)].
That is to say, the fact that f, is a solution has been
used to show that fy(a) = fi(@). As we remarked,
(2.35) now shows that f,(x) = fi(x) everywhere.

Q.E.D.

To sum up, we have given a complete treatment of
the case K,(x) = K(a, x)/K(a, a). We have shown that
if the kernel 1 — K’ arising from this choice is
invertible (so that the Fredholm equation has a unique
solution), then the original singular equation also has
a unique solution independent of the arbitrariness in
the choice of F(x) by Eq. (2.31).

The general method of dealing with other functions
K, of the form (2.23) is clear (take another term in the
Taylor expansion of F(x) about x = a). We will not
go into details here. Generally, we see that we are very
far from the powerful uniqueness theorem (Fredholm
alternative) available for Fredholm equations. This
uniqueness problem is clearly important for applica-
tions, particularly where numerical computation is
contemplated, and we will deal with it more fully
elsewhere. On the other hand, we believe that we
have now achieved a reasonably satisfactory exist-
ence result.

We turn now to a more detailed discussion of the
square summability and continuity conditions at
x = a, required for the application of Theorems 1
and 2.

In the problem of Eq. (2.1), there will be no
nonintegrable singularities around x = @ provided,
say, that f(x) and g(x) satisfy Holder conditions
H(u) at x = a with u > %, and that K(x, y) satisfies
a Holder condition H(u, p) at (x, y) = (a, a) with
u >} [these conditions arise from Eq. (2.8)], and
provided also that the arbitrary functions F, K, are
H(p) at x = a [this arises from (2.12)]. (As we will see
later, although weaker Holder conditions can be
given, there is no point in going into mere detail.)
Again, a symmetrical treatment will also impose
Holder conditions on the other functions G, K;.

The integrals in (2.12) will then converge, for in-

(2.35)
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stance, provided that the following functions are
square-summable at infinity in y, when multiplied
by yt:
K(x,»); FO); fO0); K.

These conditions already ensure that f'(x) is a square-
summable function. The function g'(x) will be square-
summable provided that in addition, x%g(x) and
x*G(x) are square-summable at infinity. Finally,
K'(x,y) will be double-square-summable provided
that x¥K,(x) and x}K(x, a) are square-summable at
infinity, and that x}y?K(x,y) is double-square-
summable at infinity. Again, these are by no means
the weakest conditions that can be imposed, if one is
willing to go to enough trouble, but they have the
merit of allowing a completely symmetric treatment.
One may consider relaxing these conditions in a
different way on g and f, but in the case of the Bethe—
Salpeter equation, the considerations of Sec. 1.2 apply
and make it unlikely that this will lead to greater
generality.

In this situation, then, Eq. (2.2) can be handled by
the usual methods of Fredholm theory, and will give
a square-summable solution f'(x), so that the function

f) = F(x)f(a)
(x = a)f
will be square-summable; the singularity is not getting
worse.

Now suppose that all the conditions on the kernel
K hold. Then K’ defines a transformation which we
will also label X', from L3%*(— oo, o0) into itself, with
norm )

3

1K' = f IK'(x, y) dx dy,

so that then we may extend the treatment to any
functions f, g such that f’, g’ are square-summable,
regardless of whether or not the Holder conditions
apply.

The further paragraphs of this section will be
concerned with generalizations of the procedure of
Theorem 1 to the following situations:

Sec. 2.2: equations between kernel functions;

Sec. 2.3: equations with singularities in two inter-
mediate variables;

Sec. 2.4: equations with several singularities in
each intermediate variable;

Sec. 2.5: further generalizations.

2.2. Equations Between Kernel Functions
We now consider how to transform Eq. (2.7) in a
fashion reasonably symmetrical between the two
variables. In principle, we use transformation equa-
tions for all three functions similar to those for
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K(x,y) in (2.8). The case G = K; must be used if we
wish to have g = K in (2.7). If we wish to regard the
multiplication in (2.7) as giving rise to an algebra
structure on the class of kernels (Sec. 1.2), we must
have K;, K,, etc. Notice that the transformation will
never be ahomomorphism of such an algebra structure,
since it is dependent on the special kernel K. However,
we may obtain a homomorphism of the algebra
generated by K, etc. But in general, if we wish to
use the algebra structure defined by the equations,
we must use that of the transformed equations.
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We want to transform both sets of variables at
once. Now it is simply not true that the transformation
(2.8) takes the integral in (2.7) into the form

JIK', '] EfK'(X, 2)f'(z, y) dz. (2.36)

This works only for the special kernel K of Eq.
(2.1). For this reason we have to write down trans-
formation equations analogous to (2.8) for three

functions each of two variables, and calculate the
integral (2.20). We take, then, the transformations

fx, ) = FX)f(@, y) + f(x, DF() — FEFRG) (@, d) + (x — ¥y — a)¥f'(x, ),

g(x, y) = Gi(x)g(a, y) + g(x, DGo(y) — Gi(x)Go(1)g(a, @) + (x — @)} (y — A’ (x, ),

2.37)

K(x,y) = Ky(x)K(a, ) + K(x, DKy(y) — Ki()K:(»)K(a, @) + (x — &)} (y — a)*K'(x, ),

giving the following expression:

(x — at(y — DMK, ']

= + K(’C, Tf(.z_, y) - K(x9 Z)Fl(z)f(a9 y) - K(x, W(—Z’ a)Fz()’) + K(xa Z)FI(Z)F2(y)f(a’ a)

— K\(\)K(a, 2)f (z, y) + Ki\(x)K(a, 2)F,(2)f (a, y) + K, (x)K(a, 2)f(z, ))Fy(y) — Ki(x)K(a, 2)F,(2)F5(y)f (a, d)
— K(x, Ky(2)f (z,)) + K(x, K, (2)Fi(2)f (a, y) + K(x, D)Ky(2)f (z, D)Fy(y) — K(x, D K:(2)F,(2)F,(y)f (a, @)
+ K(a, &) [Ki(x)Kx(2)f (z, ) + Ki(¥)Ko(2)Fi(2)f (@, y) — Ky()K(D)f (z, D) F,(y) + Ky (x)Ke(2)F1 (D) Fa(y)f (a, @)].

As before, we can remove everything except the top
row by imposing on the arbitrary functions the
cancellation conditions

K(a, 2)f*(z, y) = K(a, 2)Fi(2)f*(a, y), (2.39)
Kz(z)f*(Z, y) = Kz(Z)F1(Z)f* (a, ),

5 3) = f(x, ) — f(x, @)F(p).
The original singular equation reads, at x = a,
f@,3) =g, ») + K@a,2)fG, ) (2.42)
= g(a,)) + K(a,9)f*(z, y)
+ K(a, 2)f(z, A)F,(y), (2.43)
and expansion of f(z, y) in (2.42) yields
S(a, y) = g(a, y) + K(a, 2)Fi(z) [*(a, )
+ K(a, 2)f(z, a)F(y)

+ (-t f K(“’(z)i’ (Z;%y) Y (2.44)

Suppose we can choose the arbitrary functions so that

f K@, 2)f(z 0 dy _
(z —a)t '

(2.40)
where

(2.41)

(2.45)

(2.38)

(We will show later how this can be done.) Then
comparison of (2.44) with (2.43) shows that the first
cancellation condition (2.39) will hold.

Now we suppose further that the one-dimensional
problem

f(x,a) = g(x,a) + K(x, ) f(y, a), (2.46)

has been solved by the method of the previous sub-
section. Knowing f(x,a), we can compute f(a, y)
from (2.44) (dropping the last term). Now we return
to the residual terms remaining when the cancellation
conditions (2.34-40) are fulfilled. In order to ensure
that Eq. (2.7) reduces to the form

f'(xp)=2¢'(xp) +fK’(x, 2)f'(z, y)dy, (247)

the following relation must hold between the residual
terms [compare (2.16)]:

Fi()f*(a,y) — Gi(x)g*(a, y) + f(x, a)Fx(y)
— g(x, A)Gy(y) — Gi(x)g(@, A[Fx(y) — Go(y)]
= K(x, 2)f z, DF(y)+ K(x, 2)F,G)f*(a,y), (2.48)
where (sic)

g*(x,y) = g(x,y) — gx, F(y). (2.49)
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By using (2.46), we can rewrite (2.48) in the form
Fi(x)f*(a,y) — Gi(x)g*(a, y)
= [g(x, @) — G:(x)g(a, A)][F(x) — G,y(x)]

+ K(x, 2)F,(2)f*(a, ). (2.50)
We note that since the condition (2.45) is assumed
here to hold, (2.50) becomes, at x = a, the identity

[*(@,)) = g*(a, y) + K(a, 2)F1(2)f*(a, y).
Substituting back into (2.50), we see that (2.50)
follows from the following two explicit restrictions on
the arbitrary functions:

Fy(x) = Go(x),

Fy(x) — K(x, z)Fy(z)
1 — K(a, 2)F(z)
[compare this latter with (2.21)]. Thus the residual
condition holds when (2.41-42) hold, and we can go
on to show how the cancellation conditions may be

made to hold.

We will do this in detail only for the special case
where

2.51)

Gy(x) = , (2.52)

Kz(x) = K(d, x)/K(aa a)s

just as in Sec. 2.1. Then the two cancellation condi-
tions (2.19-20) are identical. We now show how, by
the choice of G, [upon which there is as yet no restric-
tion if we regard (2.51) as a formula giving F,],
(2.45) can be ensured. We write

g**(x, y) — g**(x, A)Gs(y)

(2.53)

"(x, ) = (2.54)
gxy o —af
where
g**(x’ y) = g(x9 .V) - Gl(xgg(a’ y) R (2.55)
(x —a)

As usual we suppose that the kernel (1 — X) is
invertible, with the inverse represented by a function
(or distribution—the difference is unimportant here),
L(x, y) say. Then, if f'(x, y) is the unique solution of
(2.47), so that f' = Lg’, we have
f K(a,z)f'(z, y) dz

- (z— a)ir
- ﬂ K(a, 2)L(z, w)g**(w, y) — g**(w, a)Go(y) dz dw
(z = a)}(y — )t '

(2.56)

Thus (2.45) will hold if we make the following
choice of Gy:

_ K(a, z)L(z, w)g**(w, x) dz dw
6= [[ - o /
J‘J’ K(a, z)L(z, w)g**(w, a) dz dw

P (2.57)
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We note that G,(a) = 1 automatically for this choice.
We must make sure that the denominator of (2.57)
does not vanish; one sees easily that this essentially
means not using F, for the expansion of f(x, @) when
solving (2.46), but by using another expansion
function and appealing to the uniqueness theorem
proven in Sec. 2.1.

This sequence of constructions may be summed up
as follows:

If the X’ arising from the choice K;(x) = K(x, a)/
K(a, a) is such that (1 — K') is invertible, we may
choose F, arbitrarily [subject to Fy(a) = 1]; G, is
defined by (2.52), and G, is defined in terms of G,
and (implicitly) X, by (2.57). Then (2.45) holds. Take
F; = G,. Then f(a,y) may be computed by first
solving (2.46) [our assumption on (I — K’) assures us
that there is a unique solution f(x, @)] and then using
(2.44-45). Then the residual condition (2.48) is
assured, and the singular equation is reduced to the
Fredholm equation. Conversely, with the same
choices, the solution f’ of the Fredholm equation
gives rise to a solution f(x, y) of the singular equation
{computed by (2.37)].

We will not state a formal uniqueness result corre-
sponding to that of Sec. 2.1, but will defer this rather
complicated question to a future publication. A
formal summing up of the existence results is provided
by the following two statements:

Theorem 2: Provided that suitable continuity and
square summability conditions hold, the expansion
(2.37) reduces the singular integral equation (2.42) to
the Fredholm form (2.47), if the arbitrary functions
F;, G;, K; (i =1, 2) are chosen so as to satisfy the
cancellation conditions (2.39)-(2.40) and the residual
condition (2.48).

Theorem 3: In theorem 2, take K,(x) = K(a, x)/
K(a, a). K, is now redundant. Suppose the resulting
kernel
K'(x,y) = [(x = o)y — a)I**

X [K(x, y)— Kix, a)K(a. y) a?K(a’ y):| ,
K(a, a)

is such that (1 — X"} is invertible. Then there exists a
choice of arbitrary functions for which the cancel-
lation and residual conditions are satisfied, so that the
singular equation possesses a solution.

We note that these methods do not allow us to
preserve directly the commutativity property

K(x, p)f(y, 2) = f(x, p)K(, 2), (2.58)
of the equation (where it holds). That is, if (2.58) is
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known to hold, we cannot ensure directly that the
Fredholm equation has the corresponding property

[Ke ooty =[1w kG20 @59

We cannot at the same time and by the same methods
cause the equation

f(x’y)=g(x,y)+f(X,m’y), (260)

to imply
£y = gx ) + f F(% DK (2, ) dz. (2.61)

This is because the cancellation condition required to
pass from (2.60) to (2.61) by our methods is

f'(x, 2)K(z, a)dz _ 0

f (z — a)*} '
and would have to be ensured by judicious choice of
G, . But we are not at liberty to fix G, ab initio be-
cause we could not then solve (2.52) for F.

This commutativity is most interesting in the
“reciprocal kernel” case whose algebraic properties
are mentioned in the Introduction, i.e., the case
g(x,y) = K(x, y). Our treatment does not preserve
this property [g'(x,y) # K'(x, y)]. Where the com-
mutativity property is important, it seems indicated to
give a treatment along the present lines using the
expansions

F(x, ) = Fi(x)f(a, ) + f(x, ))Fy)
- Fl(x)Fz(Y)f(aa a)

+ (x = ¥y — a)f'(x, ),
g(x, a)g(a, y)

(2.62)

g(x, y) = (2.63)
g(a, a)
+ (x — oty — a)tg'(x, y),
K(x. y) = Ko @K@ ») -

K(a, a)
+ (¢ — oy — 2K (x, ).
[Note that this type of expansion, Fy(y) = f(a, y)/
f(a, a), will not do for f(x, y) since it leads to a non-
linear problem.] We leave details to the reader.

Now let us return briefly to our original expansion
method (2.37) and see what happens when we take for
K, some function other than K(a, y)/K(a, a). We take
for K, the form (2.22), where K”(x) is as yet undeter-
mined. We introduce the notation

fO) = K'(2)f(z, y), etc.,
Fx = K"(2)F,(z), etc.,

(2.64)

(2.65)
so that

K"(2)K(z, a) = K(a).
Inserting this definition of X, into the last transforma-
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tion equation (2.37), we obtain
0 = Ky(K(a, y) — Kx(y)K(a, a))
- - a f ——————K"(?K'(Z;){) & (266)
7 —

Since the second cancellation condition (2.40) is equiv-
alent to
f KD (e 0)dz_ 267
(z—a)
(2.66) tells us that it is also equivalent to
K(a,2)f'(z, y) dz
K, i
(z—a)
= (y —_ a)‘}ff K (U)K (u’ Z;f (Z, J’)fu dz , (268)
(u —a)(z —a)

always provided that

R.K(a, a) # 0. (2.69)
But if the first cancellation condition (2.39) is satisfied,
the left-hand side of (2.68) vanishes. Thus the second
capcellation condition (2.40) will automatically be
satisfied at y = a; and it will be satisfied for all y
provided that the double integral in (2.68) vanishes
(identically in y). This is a condition on a function of
one variable, and hence we are not losing much by
looking for the particular case where

K'WK'@w ) du _ 2.70
. f u—a) ’ e
ie.,

K,(»K.K(a, a) = K, K(a, y),
which determines K, uniquely:

K2(y) = K(a, )’)/K(a, a),

[so that K”(y) is actually a distribution of a rather
special sort]. No other choice of K, will allow the
cancellation by a mechanism which depends on f’
only through (2.39). The only other freedom we can
use to make sure that (2.67) holds is that in K itself.
But (2.67) is nonlinear in K, (for K, enters implicitly
also in f' = Lg’); this makes it very difficult to give
an explicit condition on K, other than, of course,
Ky(x) = K(a, x)/K(a, @). Thus we will not consider
this possibility further.

The constructions we have given are specialized
not only in the sense that the mechanism used to
ensure the residual condition (2.48) is specialized
(however natural in appearance), but, more generally,
in that we have caused the last three rows of (2.38) to
vanish separately by the cancellation conditions
(2.39-40). One may investigate whether this can be
generalized so that the last three rows still vanish.
We have done this, and it turns out that the only
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alternative to the choice K;(x) = K(a, x)/K(a, a) leads
to a homogeneous-linear constraint for K, which, in
general, will have no solution. Since this apparent
generalization thus leads nowhere, we omit the details.

Finally, we mention the possibility of using for
kernel functions, a slightly different type of expansion
more closely related to, but simpler than, the Taylor
expansions used in Ref. 15. For instance, we may try

SO, ) =fla,a) + (x — Ofi(x) + (v — Ifa(y)
+ (x = a(y — a)f '(x, ),
g(x, ) = g(a, @) + (x — Agi(x) + (v — Dga(y)
+ (x = Ay — a)g'(x, y),
K(x, y) = K@@, &) + (x — a)Ky(x) + (y — DK:(y)
+ (x — a)(y — oK'(x, y).
This leads to a system of coupled Fredholm equa-
tions, for which we will evidently have a uniqueness
theorem. However, because of the limitations of our
expansion, there is no hope of extending such a
uniqueness theorem to functions which are not
differentiable in x or y at a, but are still functions of
the type (2.37).
2.3. Equations with Singularities in Two Intermediate
Variables
The physical importance of this generalization is
obvious.

M. M. BROIDO AND J,. G. TAYLOR

We take as our basic equation

K(x, 21, 22) f (21, 25) dzy dz,s

, (2.
(z1 — a)(z — a) @7

fm=mwf

where x = (zl) , etc. Equation (2.70) thus corresponds
2

to a Bethe-Salpeter or similar equation in which
two-particle intermediate states are exposed in the
direct channel. However, we have not indicated the
“kernel” nature of all the functions explicitly, so that
we are generalizing Sec. 2.1 but not, as yet, Sec. 2.2.
In Ref. 15 we used an expansion of the form

SOy, x0) = g(xg, x3) + (% — @)my(xy)

+ (xp — @)my(xy) + (x; — @)(x, — @)n(x), (2.72)

in order to obtain equations between functions in
certain L” spaces. However, this time we use the more
flexible procedures introduced in the previous sec-
tions. For simplicity, we will give a rather *“‘asym-
metric” treatment of (2.71) in which the x variable
in K is left entirely alone, briefly indicate how the
cancellations arise, and then sketch a more “sym-
metrical” treatment. As might be expected, the
formulas rapidly become extremely cumbersome.
We use the expansions

S, x5) = Fl(xl)FZ(x2)f(a’ a) — Fi(x)f(a, x5) — Fa(xo)f (x1, @) + (x; — a)%(xz - a)élf'(xl, X2),

g(xy, x3) = Gi(x1)Ga(x2)g(4, a) — Gy(x)g(@, x;) — Ga(x3)g(x1, @) + (x; — a)%(xz - a)%g'(xl, X,),

K(x, yl > y2) = K1(}’1)K2(}’2)K(X, a’ a)

.73)

— Ky(3)K(x, a, p2) — Ka(p)K(x, 31, @) + (), — @) (p, — @K' (x, y1, o).

Then, introducing the generalized integral notation

K 2 3 d d
Kmmm=f“hmmwﬁnn,
(yl - a)(yg - a)
we obtain the expression corresponding to (2.38):
1K, f)

etc.,

HmﬂfﬁhmMNNMMwmmq

= K(x, YO) — KCx, p1, y2)f @ yF ) — K(x, y5, y B0l 1, @) + J(x, y1 IR O0DF () (@, @)
— K(x, 8, ypKi G Gr» 7) + K(x, a, y) KD @ yF0) + K(x, @, y)KsODF () 0> @) — K(x, 0, y) Kx(DF, ) Fo(0)f (@, @)
— K(x, 31, K007 01,70 + K&, y1, @K @ 72 Fi(y) + KCx, y1 dKGoF00)f (71, @) — K(x, y1, DK F(rDF(2) £ (a, @)
+ K(x, a, { K KD FO s ve) — KK )P () @, y2) — KK f O OF() + Ky K Filo D) fla, @)}, (2.74)

Here the second row will cancel identically if either of
the relations

K(x, a, ) f(y1, y2) = K(x, a, y)Fs(y2) f (1> 9)s

KO f 1>y = KiO)F(p)f(a, y2)  (2.75)
holds; the third will cancel identically if either of the
relations

K(x, y1, @) f (31, yo) = K(x, y1, fi(y)f (@, y2),
K()f (31, y2) = K(p)Fo(y2)f (1, @) (2.76)

holds; finaily, the vanishing of the fourth row may
be ensured by a scalar condition which may be written
in obvious notation

(KK f) — (KF)(Kof) — (K ) (KRF)

+ (KiF)(KeFp) = 0,
with
(Kof) = Ky(:)f(a, y2), etc.

Then the imposition of further conditions assur-

ing that the integral equation can be written in
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nonsingular form will follow the same general pattern
as in previous cases.

A more “symmetric” treatment would take the
following general course. In order to handle the
rather complicated expressions, we introduce a matrix
notation

1
1

X“(x) = 1 H

(= &x, — )t
Fy(x) = (Fi(x)Fyx5)f(a, a), —Fi(x)f(a, x),
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so that the natural transformation
J(x) = Fy(x)Fs(x2)f (a, a) — Fy(x)f (a, x5)
— Fp(xa)f (X1, @) + (%, — a)¥(x, — a)‘}f'(X, »

takes the form

f(x) = XC)F (). Q.77)
Similarly, we write
g(x) = XH(x)G(x) (2.78)
and
K(x, y) = X (x)Kop(x, 1) Xp(y),  (2.79)

where the G, in (2.78) is obvious and the matrix K,

—Fy(x2)f(x,, @), f'(x)), o©f (2.79) has the elements
Kaﬁ(x s ) )

K'(xpK 2(x2)K1(}’1)K2 (}’z)K (aaaa), K'(x)K(x3)K, (yz)K (aa}’la), K'(x)K 2(xz)Kl(}’l)K (ﬂaayz), K (x)K3(x z)K(aa}’lyz)s
K(x1aaa) K*(x2)K (y)Ko(y2), K*(x,)Ka(y2)K(x1ay,a), K*(x3) Ky (y) K (xaays), K*(x3)K(x1ay1y2),
Kl(xl)K(axzaa)Kl(}’l)Kz(yz), Kl(xl)Kz(}’z)K(aXzyla), Kl(xl)Kl(}’l)K(axza}"z), K‘(xl)K(axzylyz),

K(xlxzaa)Kl(}ﬁ)Kz(}’z), Ka(yz)K(leCzyla), Kl(yl)K(xlxza}’2), K’(x1x2y1}’2)»

in which the X* and K are the usual arbitrary functions
and the K(pqrs) = K(p,q, r, s) are the values of the
original kernel K with appropriate independent vari-
ables held fixed at a, as indicated, and finally
K'(xyx,01y2) = K'(x, y) is the function which is to
appear in the transformed integral equation. The
integral equation now takes the form

XO[F.(x) — G(x)] = f XK (%, 2)

X Xﬂ(z)X”(z)Fy(z) dz. (2.81)
The conditions under which cancellations occur in this
equation and under which it can be reduced to the
nonsingular form

F1(x) = g'(x) + f K'(x, 2)f'(2) dz,

are again closely related to those of the previous
sections and can be written down by the same methods
used in Ref. 15. Here, however, the integral equations
corresponding to the first three “components” of
(2.81) are to be regarded as subsidiary conditions on
the arbitrary functions. The details of these manipula-
tions, as well as those where the full treatment of
kernel functions is carried out, are left to the reader.

2.4. Several Singularities in Each
Intermediate Variable
The characteristic complication with which we
deal in this section arises when we consider, instead
of Eq. (2.1), the equation

K(x, ) f(y) dy

10 =g + [FTEIEDEL, o)

(2.80)

with a; # @,. We may say that there are two singu-
larities in the intermediate variable y. Moreover, in
an obvious sense, these singularities are nonover-
lapping; they cannot occur simultaneously for any
value of the variable y. In the case where there is only
one intermediate variable, this situation is fairly
general; the only further difficulty that can occur is
exhibited by the equation

£ = g(x) +f&%§£@

where D(y) may have zeros of order higher than one.
As we have observed before, such singularities do not
present anything of interest, since they must neces-
sarily be cancelled by zeros of suitable order in the
numerator if the integral is to be well defined.

A significantly more complicated situation may
occur with two or more intermediate variables,
however. Consider the equation

F(x1, %) = g(x1, Xs) +f K(xx2015) f (y1y2) dy, dy, ,

D(yy, y2)
(2.84)

where the denominator function D(yy, y,) has certain
zeros which we wish to eliminate. It may be that
for general values of y;, D has only first-order zeros
in y, and vice versa; and yet for certain (yy, yy), D
may have a higher-order zero. This complication
already occurs for the simple choice

D(y1, y2) = (y1 — ad(y1 — ad(ys — a2)(y: — ay),
(2.85)
with a, # q; # 4, # a,, and may be described by

(2.83)
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saying that the singularities overlap. An important
case where they do not overlap is that of a function

D(yy1, y2) = 1 — &a(y)llys — g2(y2)], (2.86)
for which the equation
ga(y) = g:(),

has no solution. This is closely related to the denomi-
nator function which arises in the ladder approxima-
tion to the Bethe-Salpeter equation, and motivates
us to consider the nonoverlapping case separately.
The purpose of this section is to show that the non-
overlapping case can be manipulated algebraically
into a form containing denominator functions with
only one singularity. In order to strike a reasonable
balance between clarity and generality, we will do this
in some detail for Eq. (2.82), and will then sketch a
procedure for more general equations with nonover-
lapping singularities.

The possible classes of equations with overlapping
singularities seem so ramified that it does not seem
worthwhile to treat them at this stage.

We may handle Eq. (2.82) by picking a constant &
such that @, < a < a, and using the Heaviside 6-
function 6,:

6,x)=0 for x<a,
=1 x> a,

to decompose the functions f, g, K by the following
scheme:

for

fi(x) = 0,(x) f(x),
fox) = (1 — 0,(x)) f(x),
gi(x) = 0,(x)g(x),
ga(x) = (1 — 0,(x))g(x),

0 ()0, (M K(x,
Kyj(x,y) = "—(xl;“-(i}—-);ﬁl) ,
1
(2.87)
0 1 — 0.(y)K(x,
Kyo(x, y) = L3 . _"(Z)) (x J’)’
2
— 0,(N8.(NK(x,
Ku(x, ) = & A;»_ﬁy) (5.9
1
Kys(x, y) = ( — 6,(x)N — 6,(NK(x, y),
y — a,
Then Eq. (2.82) reduces to the system
09 = 50 + [ Ee 2601
y — ay
+ f K6 N1 dy
y—a
S = golx) + f Kalx, M) dy
y — ag
+ f Kl VIOV AY - (; gg)
y—a
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in which the kernels K;; are nonsingular. This solves
the first problem.

The remaining singularities may now be removed
by the general methods of Sec. 2.1. The appropriate
conditions, generalizing (2.14) and subsequent equa-
tions, are easily written down for any particular case.
Similarly, if we wish to handle the equation

f(x, y) = g(x, y) +f Blx, 0)ftz, ) dz
(z — a;))(z — ay)
by generalizing the methods of Sec. 2.2, the decom-
position (2.87) is easily generalized by breaking all
three functions up in the way K was broken up into
K;;, and again the generalization of Egs. (2.39) and
so on are simple enough.
The next stage, then, is to deal with the equations

A =g+ Kifii +Kinfs,
fi = g+ Kufi + Kafs, (2.89)

arising from (2.88) after removal of singularities.
Here f; and g; will be certain functions in H, =
I*(a, ), and f;, g will be certain functions in
H, = L*(—~ 0, a); the K], will be certain completely
continuous operators:

Kj:H,—~H, (i,j=1,2).

Hence, on the product Hilbert space H, X H,, the
equations take the standard Fredholm form,
=g +K¥f, (2.90)
and may now be dealt with by standard techniques.
The idea of this method for nonoverlapping
singularities is thus very simple: one isolates the
singularities by decomposition with § functions or
other functions having appropriate support properties,
and obtains a system of vector equations, » of them,
where #n is the number of singularities. It is evident
why this method will not work for overlapping singu-
larities: they cannot be “‘separated” in this way.

2.5. Further Generalizations

a. Equations with Other Singularities and Other
Singular Functions

In order to cope with say (x — @)™ in (2.1), one
simply replaces (x — @)t in (2.8) with (x — a)?=, etc.

Similarly, for any otherwise smooth function with a
singularity at x = a, we do the same.

If the singularities are too severe, one may have to
impose conditions f(a) = 0, etc., with consequent
modification of the subsidiary conditions (2.14), etc.

This tells us how to deal with the full field-theoretic
Bethe-Salpeter equation (1.3) with complete propaga-
tors, for the mass-shell singularity is of the same order
as for the bare propagator.
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We have already stated the possibility of damping
the behavior in the integral by using a function
with the same singularity at x = 4 as the given
function, but falling off more rapidly at infinity.

b. Change of Measure etc.

We have never specified the space in which x, y, a
are points [Eq. (2.1)], or the measure dy. In fact, we
have never “‘evaluated” any integral. Hence, provided
the singularity is expressed in a suitable functional
form, it is clear that the space in which x, y vary
can be any locally compact space and dy any measure
on it.

This modification takes care of the case where the
integration in (2.1) is of the form

f K(x, NSWP(y) dy

y—a ’
where P(y) is a given function. All we have to do is to
replace dy throughout by du = P(y) dy.

Note that the measure may be a function of the
“external” variables, u,(y) say. The algebra still works
for this situation, except that the symbol [Eq.
(2.11)] should then rather be written —=%—. The only
modification which occurs is that (2.14) becomes a
functional relationship:

X x

K f(y) = K:(V)E(y)f(a), etc.  (2.92)
This situation arises when the Bethe—Salpeter equation
is written in terms of momenta p,; the measure
H:(y) is the momentum-conserving Dirac measure
3%(p1 + p; — ps — ps)- Then (2.92) becomes pointwise
in the external variable appearing in the delta function,
and retains its form (2.14) in all the other variables of
integration. Explicit use is made of this phenomenon
below.

(2.91)

c. A Further Special Case

A further special case occurring in realistic Bethe—
Salpeter equations is integration over ‘“‘extra” vari-
ables without singularities, e.g.,

f Ki(x, 21, 25, 23)Ko(21, 23, 25, y) dz, dz, dzg
(z1 — a)(z, — a)

(2.93)

This goes exactly as in Secs. 2.1 and 2.2, except that
the transformation corresponding to (2.8) has, of
course, no factor (z; — a), etc. Such a situation is
typical when one writes Bethe-Salpeter-equations in
invariants; the integration is taken over two variables
53, 54 of the form p? and having the usual propagator
singularities, together with one or more cross-
variables s;; = p,p; in which there is no singularity (at
least in the direct channel). [There is then also a
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multiplicative function in the integrand, namely, the
Jacobian of the transformation {p,} — {s;, s;;}.]

In the remainder of this paper, which will deal with
more detailed applications, we will frequently take
for granted the simple modifications mentioned in
this section.

3. DIRECT SINGULARITIES IN THE
BETHE-SALPETER EQUATION
We have already remarked that in field theory, the
BS equation arises as an expression of unitarity. In
terms of momenta, the field-theoretic form (1.3) reads

i
2027
d'(ps, pe)V(1,2,5,6)T(5,6,3,4)
s (P2 — m® + ie)(ph — m? + ie)
where S denotes the manifold

Pt pe=ps+ps.

We use the sign conventions of Ref. 6. Thus the vari-
able p, + p, plays the role of the variable s in Eq.
(1.13) (and, of course, we could transform to this
form, but we prefer not to).

Thus we are effectively integrating over one four-
vector variable p; — p,;. With these sign conventions,
T has the symmetry

7(1,2,3,4) = T(-3, —4, —1, =2).

T{1,2,3,4)—V(1,2,3,4) = —

» (3.1

The simplest thing for us to do is to transform to
invariants s, = p?, s;; = (p; + p;)?, maintaining the
p.’s in the measure (so as to avoid complications con-
nected with the Jacobian, as these are known to be
very awkward*®). Thus we write

T= T(sli S5, 835 84,5 S12, S13’ sld)’ ete.

Then looking at the explicit form of multiplication,
we can divide the invariant variables in T(s,;) into
four groups:

(a): variables integrated over, and appearing in the
singular denominator: s3, 5,;

(b): variables not integrated over, but should be
treated along same lines as group (a), for reasons of
symmetry: s, S,;

(¢): variables integrated over, but not appearing in
the singular denominators: s,5, §14;

(d): variables not integrated over, and not affected
by symmetry considerations: s;; (= 53,).

We first look at an asymmetric treatment along the
lines of equation (2.73). Thus we will write

(519 2, 8125 S13, S14) =5 (Sa}’)»
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and the first of Egs. (2.73) will take the form
T(S, s3 s S4) = FI(S9 S3)F2(S, SL)T(S’ m29 m2)
— Fi(S, s3)T(S, m?, 5,) — Fy(S, s))T(S, 55, m?)
+ (s3 — mz)%(s4 - m2)%T'(S, 53,50, (3.2)

V will be transformed twice, differently each time.
This corresponds exactly to the remark in the second
paragraph following Eq. (1.12). The K(x, y)f(y) nota-
tion must be modified to include integration over s,4
and s, as well as s; and s,. Then the cancellations in
Eqs. (2.74-76) go through without substantial
modification.

The symmetry property of T in momenta results in
a symmetry in invariants: T(invariants) is left un-
changed by exchanging the (1, 2) with the (3, 4) set.
Of course this property is not maintained by the
transformation (3.2), and so if we wish to preserve it,
we must introduce three transformations (one for T,
two for V), analogous to (2.79). The form of these
transformations, with the modifications connected
with the above classification of the invariant variables,
is so similar to that given in Sec. 2.3 that we will not
write it out again. We merely note that the symmetry
property of T is preserved if we make only one restric-
tion on the arbitrary functions K® appearing in the
analog of (2.80) for T, namely, that each K| should be
equal to the corresponding K°.

Thus we conclude that the removal of singularities
from the field-theoretic Bethe-Salpeter equation (1.3),
with simultaneous preservation of the symmetry
property of T, presents no particular difficulties.

The next step concerns the application of Fred-
holm theory. As we discussed in the Introduction, this
must depend on the given form of V; and according to
our choice of transform, we can easily check in any
particular case whether the standard Fredhoim theory
conditions apply or not.

In the abstract construction (which one of us has
discussed elsewhere®) to establish nonexistence theo-
rems for certain systems of equations containing the
BS equation together with another to determine V,
we require the existence of a suitable involution on the
algebra of operators generated by 7. This arises from
the symmetry, as can be shown explicitly.®* The
construction of the present section shows that this
property can be preserved during the process of
removing the direct singularities. We are then in a
position to show explicitly how the general construc-
tion may be carried through, avoiding all difficulties
connected with propagator singularities. Since thisisa
rather technical question, and one to be dealt with by

25 M. M. Broido, J. Math. Phys. 8, 1 (1967).
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methods different from those of this paper, we will
go into it elsewhere.

4. GENERALIZED WICK ROTATIONS

We now turn to discuss the case where the potential
V in the BS equation (1.1} is of the form (1.2), corre-
sponding to single-particle exchange. This poses the
new problem of crossed-channel singularities. A
general potential will be expected to be the sum of a
finite number of single-particle exchange terms to-
gether with a potential which is finite in momentum
transfer ¢ (or u) for all values of ¢ (or u), and will be
reasonably smooth in these variables (at least Holder-
continuous H{u), u > %, at all real values of the
variables). Our earlier discussion in Sec. 2 allows us
to remove all the singularities in the BS equation
arising from the nonsingular part of the potential. Thus
if we can remove the singularities due to single-
particle exchange we will be able to discuss a very
wide class of potentials.

The new singularity introduced by the exchange
term is also a propagator singularity. The basic differ-
ence is that it is now a moving singularity, depending
on the values of the external variables, as distinct
from the fixed singularities contained in the kernel G.
In particular, with the notation of Fig. 1, the ladder
approximation to the BS equation (1.1) is

g2
M(p,q, 1) = —"5—"
(g —r?—M*

EZ_ 4 2 _ 211
o f d*kM(p, k, DI(p + K — m]
x [(p — k) — m¥[(q — K)* — MY (4.0)

This equation has as a one-dimensional analog
169 = $5) + [ K 010

where the kernel K(x, y) is of the form

K(x, y) = Ko(x, )/ [8a(x) — &2, (4.3)
with K, continuous, and g; and g, are polynomials in
their variables. In the kernel K(x, y) of Eq. (4.3), the
singularity in the variable y is thus dependent on the
“external” variable x; hence the appellation “moving
singularity.” Similarly, in (4.1) the moving singularity
is at (g — k)* = M2 This singularity is a simple pole,
and integration over it is determined by the usual ie
prescription of Feynman. Owing to the pole nature of
this singularity, we cannot reduce (4.1) or (4.3) to a

FiG. 1. Notational conventions for 1€ ,J—'fl—
the interaction term in the Bethe-Sal-
peter equation (one-particle-exchange
approximation). rs Fkoopr

(4.2)
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Fredholm-type equation by the methods of Sec. 2,
even though these do remove the fixed pole singularities
in the integration variable k at (p 4 k)? = m? It is
possible to perform a partial-wave reduction of Eq.
(4.1); the exchange singularity in this case reduces to
a logarithmic singularity, while the direct singularities
at (p + k)? = m? remain unchanged. The methods
developed in Sec. 2 may then be used to remove these
direct singularities, thus reducing the equation for
each partial wave to one of Fredholm type. However,
it is then necessary to show that, for the solution to
each partial-wave equation, the partial-wave ex-
pansion is convergent; this is a difficult problem.
Moreover, the method of partial-wave expansion and
resumming is not consistent with crossing symmetry.
Nor is it useful for the removal of crossed-channel
singularities in the more general nonlinear systems
which arise when the potential ¥ is an unknown
determined by further equations, say field equations?
or bootstrap conditions.

Thus it is more appropriate to develop a crossing-
symmetric method which will remove, or at least
make amenable, the single-particle exchange singu-
larity. Such a method has already been proposed?®®
and applied to local field equations!” and to the ladder
approximation of the BS equation in partial waves.”!®
We wish to discuss this method here for the BS
equation outside partial-wave analysis. In order to do
this, we will discuss the general basis of the method
in the remainder of this section, and will turn to its
detailed application to the ladder approximation to the
BS equation, Eq. (4.1), in Sec. 5.

The method we will consider is an extension of the
method of Wick rotations which work for (1.1) below
the two-particle threshold, and may be extended
directly up to the first inelastic threshold when working
in coordinate space'! or up to the second inelastic
threshold in momentum space.1%%

The basic idea is to exploit the analyticity of the
scattering amplitude in the energy variables of the
various particles. In order to do this, it is necessary
to determine this region of analyticity.

Such analyticity is not given a priori; for an equation
such as (1.1), we may choose the analyticity so that the
equation may be suitably transformed into one which
is well-defined in the sense of Fredholm theory or of
the theory of singular integral equations of Cauchy
type.!® In this sense we are extending the essentially
real-variable notion of correctness class (implied in

26 J, G. Taylor, Bull. Am. Phys. Soc. 11, 133 (1965).

27 G. Tiktopoulos, Phys. Rev. 136, B275 (1964). This has been
extended to three-particle equations also in a limited energy range by

J. Nuttall [Phys. Rev. 160, 1459 (1967)]; see also R. M. Saegner,
Ref. 12.
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the work of Sec. 2) to a notion associated with suitably
analytic functions of certain complex variables. As
a first attempt to find a correctness class for (1.1), we
note that the iterative solution has every term analytic
in the product of cut planes of the energy variables
Go> ¥o» 9o + ro- Indeed, such a cut plane analyticity is
valid for the perturbation expansion of any Green’s
function with any local interaction.® For if the
Green’s function depends on n 4-vector momenta
p1° P, With >, p, = 0, then a typical internal line
in a typical perturbation expansion term for it is
(pr + k)* — m?, where k is an internal variable of
integration and p; = Y ,.; p;, I being a suitable inter-
val of integers in [1, n]. Then if p;y = x + iy, with
x and y real, a singularity in p,, can arise only if
(x + ko) + 20p(x + ko) — 32 — (p; + k)2 — m? =0.
4.4)
Thus if y £ 0, then x 4 k, = 0, and Eq. (4.4) can
never be satisfied.

In order to find where the singularities are on the
real p;, axes, we may resort to a pinch analysis.
Alternatively, we may use a consistency argument:
assume a certain set of singularities in the variables
Pro, and show that the defining equations for the
Green’s functions preserve this set of singularities.
Such a method may be used with (1.1) or the Green’s
function equations arising from any local field equa-
tion; they lead to pole singularities for

prol = @ + m),
and branch point singularities for

IPaol 2 (07 + MDY (4.5)
where m;, M; are the masses of the single-particle
and threshold states in the 7 channel (that channel
with particles with momenta p;,---,p,, with
[iy---i1=1).

Thus we may take as a preliminary condition on
our correctness class for Eq. (4.1), or its generalization
to bootstrap or local field equations, the set of Green’s
functions with the above cut-plane analyticity.

In order to use this analyticity to the full, we may
write down an integral representation embodying it,
following the methods of Bergmann, Oka, and
Weil (BOW).28 The BOW representation will be

dsy - ds, JW(sy Sy 1,P1"" " Poe
Q(Pl"'Pn)=f L n—ll(l 1P P 1)’
]_ [ (5; — pro)
=1 (4.6)
where

ls.) > (p%, + m?, )t

28 B, A. Fuks, Introduction to the Theory of Analytic Functions of
Several Complex Variables (American Mathematical Society
Translations No. 8, 1963).
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and the summation is over all possible choices of
(n — 1) independent sets I, - + - I,_, of integers from
1---n (where linear independence corresponds to
linear independence of the vectors I,-:-I,, which
may be used to represent the sets I, -+ I,_, in R*
with basis 1 - - - n).

The representation (4.6) does not have the require-
ment of positive energy built into it. In order to see
how to restrict it so that it does, we will derive a
restricted form of (4.6) from a field-theoretic basis for
the Green’s functions.?®

We have

n+1 n+1 n+l
64( gl Pi)g(Pl Ct Parn) = ;l;]I: dx; exp(—i glp’.xj)
X (O] T($(x1) * * * $(x,4)) [0), (4.7)

where we take one scalar field ¢ for simplicity. Then
we have

O] T($(xy) -+ = $(x,11)) |0
= ; 0(xpro = Xp@0) * * " (X piayo — Xpnino)X

X (0] $(xpwo) * * * B(Xpiurno) 10), (4.8)

where the summation in (4.8) is over all permutations
Pofl,---,n+ 1. We introduce the variables

Vr =Xpyp — Xpesn (1 <r<n),
so that if r
4, = ZPPU)’
j=1
then
n+1

n n+1
2 DX = Z 4,y. + xP(n+1)( Z Pi),
j=1 r=1 i=1
under which circumstances

(0] d(xpay) * * * P(Xpain) 10)

is a function of y, - + + y,, only. Performing the Fourier
transformation in the variables y,---y, as a con-
volution product in (4.8), we find

dsy - ds,p(sy* " Sp, @ " " 4,)
G —_ 1 1 n n ,
(P1"** Paya) ;f 1L 5 — )

4.9

where
n n
P(S1 " " S q,) =f_1'1Idyi exp[izlq;y,}
i= j=

X (0] ¢(xp) "~ * $(Xp(nin) 10) (4.10)
and q;, = §;, q; = q,. We remark that the difference
between (4.9) and (4.6) is a “nesting” property in the
factors in the denominator of (4.9) as compared with
(4.6). We may expand the integrand in (4.10) by

2* H. Araki, J. Math. Phys. 2, 163 (1961).
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inserting complete sets of intermediate states between
the various field operators and, using the spectral
conditions, derive the conditions met before:

ss=@+md, 5>+ MY, (41D

though now with only positive values of s,.

Elsewhere?® we denote the representation (4.9), the
energy-analytic representation, or EAR. It may have
to be altered by a suitable number of subtractions, if
the weight function p is of polynomial growth in its
variables. This representation contains explicitly the
energy-analyticity. In the following section, we use it
to simplify and make more accessible the moving
singularities in the ladder approximation to the BS
equation.

A more ambitious program is to use (4.9) in the
complete set of Green’s function equations arising
from a particular field equation.’” We may regard a
satisfactory treatment of the Bethe-Salpeter equation
as the first step towards a more complete understand-
ing of these field equations. We will return to the
further problems posed by such field equations else-
where.

We must obtain a prescription for obtaining the
physical amplitude from (4.9). This is the ie pre-
scription: s; — s; — ie, as follows from the derivation
of Eq. (4.9)

Finally, we must justify using (4.9) in place of (4.6) in
(4.1) or other Green’s function equations. One of us
has shown?? that (4.9) is consistent with the principle
of complete unitarity.® All Green’s function equations
of the form (1.3) or its many-body generalizations®
may be derived from this principle,'?-3® and this is the
justification.®!

5. THE SINGLE-PARTICLE EXCHANGE
POTENTIAL OR “LADDER APPROXIMATION”’

5.1. Reduced Energy-Analytic Representation

We now apply the energy-analytic representation
(EAR) of the scattering amplitude, Eq. (4.9), to the
Bethe-Salpeter equation in the ladder approximation,
Eq. (4.1). We do not need the full power of the EAR
to do this, because it is sufficient to continue the two
energy variables q,, ky, [in the notation of Eq. (4.1)]
into the complex plane. Thus we study the reduced
EAR?® for the two-body scattering amplitude, which

30 J. G. Taylor, Lectures at the Winter School in Theoretical
Physics at Karpacz, 1967 (University of Wroclaw, Wroclaw, 1967).

1 Thus, although people have used other integral representations
in the BS equation [N. Nakanishi, J. Math. Phys. 4, 1229 (1963);
J. W. Greenman, M.LT. preprint], there is no reason to believe that
they have any applicability to more general problems. Analyticity
ideas have also been applied to the computational problem; see Ref.
14a.
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takes the form

® ,q, t,r)dt
M(p, q, 1) =f e 8 1.1) df
ay(n,a,r) t— gy
a_(,q,r)
+f p(p, Q. t,7) dt (5.1)
—% t—qq

In Eq. (5.1) we wish to determine the limits «, by
self-consistency arguments, as sketched in Sec. 4.
The physical amplitude is then obtained by putting
t —t — ie in the first integral, and ¢ — ¢ + ie in the
second, and Jetting ¢ — 0. This prescription is obtained
immediately from the complete EAR for M(p,q,r),

ig®
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Eq. (4.9), by concentrating attention on those terms
where ¢, appears.

Now we wish to insert the representation (5.1) into
the BS equation (4.1). Equation (4.1) may be written

M = My + F[M], (5.2)

where M(B) is the Born term (single-particle exchange
potential) and F{M] is its iteration. In order to pick
out the terms of F[M] corresponding to the decom-
position (5.1), we write

F.M(p,q, ] =+

Using the usual +ie prescriptions in the propagators
in (5.4), we see that F.[M] have analytic continuations
in g, into the upper and lower half-planes, respectively.
If we decompose M in a similar way, M = M + M_,
corresponding to the right-hand side of Eq. (5.1),
with a similar decomposition for Mz, we have

M. (p,q,r) = Mp(p,q,r) + F.[M(p,q,r)). (5.5
We will evaluate F, [M], with M given by (5.1), by
performing the k, integration explicitly:

. 2
F,[M(p,q,n] = (;g)4 fdakfdko{propagators}_1
m

=] k d a_{k)
)t — kg — i€ J-o t— ko + i€

In Eq. (5.6), we have suppressed the dependence of
p=(p, K, t, ryon p, r; similarly for «_ . The dependence
on kq is trivial. We close the contour of integration in
the lower half of the k, plane, and by taking account
of the k, poles lying there, evaluate the integral by the
method of residues. It is convenient for this purpose to
restrict ourselves to the C.M. system (p = 0).

5.2. Evaluation of the F_ Integrals in the Center-
of-Mass System

For the expression (5.6) we obtain the explicit

expression
3

F,IM(p, g, V] = g f o {— f dilp, (K, 1) + p_(k, 1]
X [8apoa_(t + a_)(b, + a )]
+ f dtlp,(k, 1) + p_(k, )]
x [8apya_(b, — a )t — a)I™
+ f dtlp,(k, DIt + a)(t + a )t — a,)
x (t = a )t — b, (5.7)

F[M] = F,[M] + F_[M], (5.3)
where
f d*kM(p, k, r)
Qo' l(p + B — mA(p — k)* — m®llgy — ko F (q — K)* + MHH((q — k)2 + M3}
(5.4)
where
a,=p,+a, a=ki+m?
b, =q4F b, b? = (q — k) + M2,
g’ = g¥/16x3.

Notice that no residues from moving poles have to
be evaluated, since (by the je prescription) the choice
of contours always excludes these poles. Similarly, we
evaluate F_[M] by closing the contour in the upper
half k,-plane to give

3

F_IM(p.q.r)] = ¢ f db—"{— f dtlp.(k, ) + p_(K, D]

x [8apya (a. + t)(a, + b )"
— [l 1) + p (k. D)i8apoa (s — a)

(Y

X (b — a)™" + f dto_(k, 1)

X [(t+ a)(t —a)(t + a )t —a)(t — b )]
(5.8
Next, we take the discontinuities across the real
g, axis of the quantities appearing in Eq. (5.5), which
gives
2mip, = disc Mp, + disc F_[M],
where, using (5.7-8),
disc F,[M(p, q, r)] = 2mi) - g’

d’k
x f -~ {— f dtlp.(k, 1) + p_(k, )]
x [8apya_(t + a—)]—lé(b+ +al)
+ f dilp,(k, 1) + p_(k, )]Bapea,(t — a )"
x 8(b, — a,) — f dtlp, (k, )]

X [(t+ a)(t + a )t — a)(t — a )] '6(by — 1),
(5.10)

(5.9
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disc F_[M(p, q, r)] = (2mi)- —¢g’
3k
x f ‘%{ f dilp,(k, 1) + p_(k, D][8apoa,(a, + DT

x 8(a, + b_) + f dtlp,(k, £) + p_(k, D]

X [8apea_(t — a )] 8(b_ — a_)
+ dtp_(k, D[(t + a)(t + a)(t — a,)(t — a )]
X o(b_ —1). (5.11)
Similarly,
+g°
(2(q — r)® + M*P
X 0(dy — 1o F (4 — 1) + MDH. (5.12)

In all these equations, the variable ¢ appearing in
Eq. (5.1), where free, has been replaced by ¢,. Now
we write Eqgs. (5.9)-(5.12) as a pair of coupled linear
integral equations, with

[ 2mi MB—
We obtain

m(pa q, r) = mB(p9 q, r)
+fK(P, g, k, m(p, k, t, r)d*k dt, (5.13)

disc Mp(p, q, 1) = (2mi) -

in which, introducing the new notation

A, = [8apya_(t + a_)'0(b, + a_),
A, = [8apya, (t — a ) 7'o(b,. — a,),

Ay = [Bapea,(t + a) 66+ a,), [ 1Y
A, = [Bapoa_(t — a )] 6(b_ — a_),
Ly = (07 — e = )00, = 0 (510

T, = [(2 — a)(® — a)]8(b_ — 1),
the elements of the 2 X 2 matrix K can be written
K, =gb (=0 + A =Ty,

K, =gt (—A + Ay,

K= —gb A+ Ay,
K_=—gh(A;+ Ay + Ty).
Before discussing the singularities of the matrix

elements of K, we compute the limits «, of the ¢
integration in (5.1). In fact, we have

“+(P0a q, r) = min{—'Po + [q2 4+ (M + m)2]%’
ro + [(g — 1)% + 4M21E},
oa_(po, q, r) = max {+p, — [4* + (M + m)"},
+ro — [(q — 1) + 4M2]E},
(5.17)

(5.16)
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provided that the Born term is explicitly subtracted.
We perform this subtraction by writing

m = mg 4 n, (5.18)

so that n satisfies the integral equation
n(p9 9, r) = nB(P’ q, r)
+ (K, 0% onip K, 1) ke, (519

where ny is the weight function in the EAR arising
from the fourth-order box diagram. Explicitly

ng(p, 4, 1) = f K(p. 4. k, Omy(p, k, 1, )d°k d,

so that
o d*k
hp. = § f[Z(k _ l‘)2 n Mz]%
X [K (P, 4, k, 7o + ((k — 1) + MO}
— K, (p, g,k 1y — (k — 1) + MO,
ny = g2 f d’k
[2(k — r)? + M2
X [K_(p, 4 k; ro + ((k — 1)? 4+ M??)
— K__(p, g, k, 1o — ((k — £)* + M2H)).
(5.20)

We see that the integration over the variable k removes
the 6 functions which appear in the matrix elements of
K as well as the 4 functions and principal value singu-
larities arising from the poles in the terms A,, T';, so
that ny is a continuous function of its variables.

We now claim that (5.17) determines the correct
range of ¢ integration in (5.19). We could have read
off (5.17) immediately from the discussion of the EAR
in the previous section—in particular, from Eq. (4.11).
However, we cannot immediately use such a result in
our present discussion, since (5.13) has not been
derived on a field-theoretic basis. We will show this
by a self-consistent argument: we assume that the
range of integration over ¢ in (5.19) is correctly given
by (5.17) and then show that the integral in (5.19) has
support in the variable g, satisfying

qo > (P> 45 1) (g0 < “_(Po, q, )}

for the integral contribution to n,(n_), with «, again
given by Eq. (5.17). We will also show from (5.20) that
ng satisfies these support conditions. Thus it is possible
to search for solutions to (5.19) with (5.17), for ex-
ample, by iteration.

To discuss the integral in (5.19), we have that
K, .(p, ¢, k, t) are nonzero only provided g, takes one
of the values [(q — k) + M2} + [k* 4+ m?)t & p,
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or [(q — k)* + M2} + ¢, where

t > min {—p, + [K2 + (M + m)]3,
ro+ [(k —r)? + 4M2]E}

The minimum of these values as k or ¢ vary over
their allowed ranges is

min {—p, + [q% + (M + m)*}},
ro + [(q — 1)% + 9M2PH},

which is greater than (5.17).

Similarly, K ,(p, ¢, k, t) are nonzero only provided
g, takes one of the values —[(q — k)® + M2 —
k2 + m? & p, or —[(q — k) + M?}} + ¢, where

t < max {p, — [K* + (M + m)’R,

ro— l(@ — ? + M2}
The maximum of these values as k or # vary over their
allowed ranges is max {p, — [q® + (M + m)*}},
ro — [(q — )2 + 9M?}}}, which is again less than

«_(po, g, r) given by (5.17).
Finally, we note that the supports of the integrands
of (5.20) are restricted to the following manifolds:

ng,:
{‘10 = [(q — W* + M} + [k + m*} & po,
Go=ro + [(@ — K2 + M + [(k — )2 + M,

ng_:
{qo = —[(q — k? + M}t — [k 4 m?]t £ py,
go= —[(q — W? + M2} — [(k — ) + M} + 1,

As before, the minimum value of g, for which the
integrand of ny, does not vanish will be « (p,, q,r)
of (5.17), while the maximum value of ¢, for which
that of ny_ does not vanish. will be «_(p,,q,r) of
(5.17).

Now we can list the singularities in the matrix
elements of K. In K, the apparent singularities at

t=a,, t = —a_ have zero residue because of can-
cellations between the three terms; similarly for the
singularities in K__ at t = a_, t = —a, . This leaves
us with the following singularities: in
K., at t=—a., t=a dueto [},
K, at t= —a_ dueto A,
at t=a, dueto A,,
K, at t=a dueto A,,
at t= —a, dueto A,
K_ at t=a., t=—a_ dueto T,.

The support conditions on n allow us to remove all
the a, singularities, provided certain conditions hold
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on p,, ry. For instance, in K, , if the outgoing
particles with momenta p 4 r are near their mass
shells, we have rg~0; so if py > 0, the t = —a,
singularities cannot occur, as this would require
—po— K& — m®lt > ry + [(k — r)? + 4M?}. One
easily verifies that this works for all other ¢ 3 a,
singularities.

With p, and r, in these ranges, then, we are left
with the following singularities:

in K., at t=a_ dueto I,

in K,_ at t= —a_ dueto A,

. 5.21)
in K, at t=a_ duecto A,

in K_ at t=—a dueto T,.

[If necessary, we can recover the entire p,, 7,
behavior by using the full EAR, Eq. (4.9). But we
will not need this.]

Let us consider the general nature of these singu-
larities. They will occur at values of 7 given by the
singular denominators alone, i.e., respectively,

t = Flp, £ K + m??],

and only when the space components k satisfy the
support condition.

Let us see what remains to be done before the fixed
singularities can be removed by the methods of Sec.
2. The following additional complications have
arisen:

(5.22)

(a) The surfaces of singularity corresponding to
the various factors in (5.14) and (5.15) appear to
intersect. But in fact this problem will only arise for
po = 0 if we relax our earlier restrictions on p, and r,
and so allow a, singularities as well; for we cannot
have ¢, = +a_ except if p, = 0. We know that the
singular nature of p, = 0'is due to the equality of the
two direct propagators; such a difficulty has been
considered recently in relation to representations of
the Lorentz group.?* We will not discuss this problem
further here,

(b) Four different surfaces of singularity are in-
volved, namely, t = 4a,. These are dealt with by
the methods of Sec. 2.4.

(c) The equations contain delta functions. These
will not give any problems of principle, provided that
the supports of delta functions do not coincide with
surfaces of singularity (though they may intersect
them, of course). We can immediately see that this
does not happen in our case. In more general situa-
tions it will happen, but may then be dealt with by

32 R. Delbourgo, A. Salam, and J. Strathdee, JAEA preprint
1C/67/9.
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using the theory of products of distributions (devel-
oped by one of us elsewhere).3

A further general difficulty with kernels containing
complicated delta functions is that, when these are
evaluated, the resulting equations are no longer
integral equations in the conventional sense; the
unknown function appearing under the integral sign
has the ‘“wrong arguments.” This phenomenon,
which has nothing to do with singular kernels as such,
is discussed in detail in the Appendix. However, it
will cause us difficulties when we wish to expand
functions about surfaces of singularity, for this
requires some continuity properties. These continuity
properties for the kernels can be assured by the Fourier
transform methods introduced in the Appendix, but
then we are no longer, in general, able to use the
delta functions to perform part of the integrations in
the integral equation. Since it is extremely desirable to
reduce the number of variables under the integral
sign in an integral equation, both from the point of
view of general discussion and for computation, we
will consider how the formalism introduced in the
Appendix is to be applied to our equation. It will, in
fact, turn out that this difficulty about the “wrong
arguments” can be avoided, in our case, by judicious
selection of the variables to be integrated by the
delta functions and by some tricks.

Let us see in detail how this will come about. We
see from the form of (5.14) and (5.15) that all our
delta functions involve b_, hence implicitly all space
parts of g and k. The effect of using the delta functions
to perform the |k| integrations (in any terms) or the
t integrations (in the I terms) would be to introduce
artificial moving (g-dependent) singularities. On the
other hand, if we regard b, as independent variables
and use the delta functions to perform the b, integra-
tions, we no longer have integral equations (another
form of the “wrong arguments” problem). The
origin of this difficulty is demonstrated in detail for
some simple kernels containing delta functions in the
Appendix. Thus to justify the expansion processes of
Sec. 2, we will remove the delta functions altogether,
by the methods of the Appendix. This effectively
means [compare the treatment of the simple cases
(A8), (A11)] solving the equation, for example in the
I';-term, which expresses the restriction given by the
delta function:

t=1b (40,49, k),
for some variable z having the following properties:
(zy) z is not a function of ¢, or of q,
(z,) z is not a function of ¢ or of |k|.

38 J. G. Taylor, Nuovo Cimento 17, 695 (1960).
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The first of these conditions is necessary in order
to ensure that evaluation (or the use of Fourier
transform on z) preserves the essential integral equation
structure; the second, to ensure that no moving
singularities are introduced (by evaluation) or that the
singularities are not masked and made inaccessible
(by Fourier transform). We have

(t — qo)* — M? — |q|> — |k|2 + 2 |q] |k| cos p = O,
(5.23)

where v is the angle between the 3-vectors q and k.
Condition (z,) tells us that we must exploit the pres-
ence of cos, and condition (z;) that it must be
broken down so that its dependence on the angular
parts of q and k becomes explicit. This could be done
by using the invariance of the equation under the
little group (the rotation group in the C.M. frame
we are using) to choose q = (¢, 0, 0) say, so that
v would depend on k only. However, this would
destroy the symmetry between the “external” variables
(90,9) and the “internal” variables (z,Kk) so that
again we would not have an integral equation. We
prefer to introduce a fixed reference frame with q
(respectively, k) having polar and azimuthal angles
6, and ¢, (or 6, and é,). Then we have

cos = cos 8, cos 0,

+ sin @, sin 6, cos (¢, — ¢,). (5.24)

We will attempt to use the delta functions to perform
the ¢, integration. According to the Appendix, we
will have to justify this by performing the Fourier
transformation on ¢,, so as to obtain an integral
equation. Neither of these operations will involve the
singular denominators, since these depend only on ¢
and k. We can solve for ¢, — ¢, in the form

e ~ ¢, = cos~ (cos Y - cos‘ 6, cos 6,0)‘ (5.25)
sin 0, sin 0,

(We can ignore the multivaluedness of the solution;
this is taken into account by a trivial summation as
described in full generality in the Appendix.) Thus we
replace 6(r — b_) by

é ‘){’k_?sa

[(t — qo)* — M* — |qI* — |k|*)/2 |q] |K|

_ —cos 0, cos @
— cos™! g k

sin 8, sin 0,

= 0], — ¢, — G(go, 19, 0,. 1, |k, 0,) say. (5.26)
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Then the ', terms, for instance, are of the form

f K(be — b3 4 DOl — bo — G(a, D))
x n(¢,, B dé, dt, (5.27)

where q stands for (g, Iql, 6,) and ¥ for (¢, |k|, 6,).
Here we have made use of the fact that the kernel

K=—gb(—a)'(* —ad)", (5.28)

involves ¢, and ¢, only through b, hence in the form
(¢ — ¢,)- Thus the integral equation reads

n(dar @) = np(dy, @) + j f Kl — b3 0 DN, D

x 0[é, — &, — G(q, )] d, dt + other terms,
(5.29)

so that we are dealing with a special case of Eq. (A10),
with F(x, y, y) = x. — F'(y, y'), say. Now, however,
using the delta function to perform the ¢, integration
gives

n(ﬁbq’ Q) = nB(d)q’ q)
+ f *[G(q. 1), 9, tInld, — G(q, 1), ¥] 4t

+ other terms. (5.30)

This is no longer an integral equation for n
because of the appearance of g dependence under the
integral sign in n. We deal with this (see the Appendix)
by taking the Fourier transform in ¢,. But since ¢,
does not appear in the kernel of (5.30), this trans-
formation can be carried out by inspection [in the
Appendix, the x integration in (A7) and the g integra-
tion in (A6) are now trivial] to yield

(€, §) = s, 9)
+ J KIG(a, 1), q, (e C OOy, , 1) di

+ terms of similar structure, (5.31)

where the prime on n’ denotes Fourier transform
with respect to ¢, and £, denotes the transformed
variable corresponding to ¢,. Thus, by a careful
selection of the variable in which to perform the
evaluation of the delta functions, together with an
observation on the way in which this variable appears
in the kernel, we have managed to avoid all the diffi-
culties usually (Appendix) associated with evaluation
of complicated delta functions. The object &, is now [in
5.31] simply a parameter (like p); the (¢ 4+ a,) ! singu-
larities of 30 are still explicitly present and are fixed,
and there are no more delta functions. No compli-
cations now prevent us from applying the methods
of Sec. 2 and removing the fixed singularities. This we
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do by expanding about the surfaces +q, = p, &
(¢ + m®)?} inthe qvariables and ¢ = p, + (k% 4+ m?)
in the ¥ variables. Thus we have demonstrated
explicitly what we claimed in the abstract—that the
equation can be written as a conventional set of
singular integral equations without moving singulari-
ties or delta functions, in which the unitarity cuts are
explicitly exhibited so that it is valid at all energies,
and from which the fixed singularities may be removed
by our methods. As an additional bonus, there are
only three variables of integration. This is what we set
out to do in the present paper. Elsewhere we will
present a more detailed computation, treating in a
precise fashion the connection between the values of
the coupling constant, the exchanged mass, and the
appearance of bound states in the direct channel.
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APPENDIX: KERNELS CONTAINING
DELTA FUNCTIONS

This appendix discusses a problem which arises
already, in connection with kernels having no non-
integrable singularities and which has hardly any
connection with the problem of singular kernels
discussed in the present paper. Nevertheless, delta
functions do arise—for instance, in the ladder
approximation to the Bethe-Salpeter equation as
discussed in Sgc. 5. We now give a brief general
discussion of them. In the physical literature there is a
tendency to avoid kernels containing delta functions
because such kernels cannot represent completely
continuous operators and so the Fredholm theory of
integral equations cannot be directly applied to them.3*
To be a little more concrete without much loss of
generality, consider the integral equation

f=g+ iKf, (A1)

with g € L2(o0, — o). If the kernel K is the delta
function

K(x, y) = 6(x — v,

so that the equation reads

£x) = g(x) + 1 f 0x — NSy, (A3)

(A2)

then K is the identity operator. [K is initially defined
and is clearly continuous on the continuous functions,
and reproduces them, and so can be extended by con-
tinuity to the whole of L2(c0, —0).] Clearly, then,

34 The problem of delta functions in the kernels arises already in
multiparticle Lippmann-Schwinger equations; see for instance S.
Weinberg, Phys. Rev. 133, B232 (1964), especially Appendix A.
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more complex kernels containing delta functions
will also not give rise to completely continuous
operators, and Fredholm theory will not be directly
applicable.

In particular, we cannot assume that the Fredholm
alternative is available; that is, we will not auto-
matically have either a unique solution of (Al) or a
solution of the corresponding homogeneous equation

f=AKf. (A4)
But the Fredholm alternative is quite a general prop-
erty of continuous operators with discrete spectrum,
and not only of Fredholm operators. The tendency of
the delta function to have a discrete spectrum is
obvious; hence also the tendency of the Fredholm
alternative to remain valid for kernels containing delta
functions, if the rest of the kernel is square summable
in all variables simultaneously.

A second valuable feature of the Fredholm theory
is the possibility of solving the equation by iteration.
But here again the presence of delta functions will not
normally make this impossible. The Neumann series
for Eq. (Al),

f= Za AK'g,

will converge to a solution of (Al) in the norm
topology of Hilbert space, provided, for example, that
|A] |K|l < 1, and that 4 is not in the spectrum of K.
(Where the Fredholm alternative is available, this
last condition says essentially that, for the given value
of E, the center-of-mass energy, the coupling constant
A must not be just such as to produce a bound state of
mass E.)

The text of this paper is largely concerned with
expansions of kernels and unknown functions about
surfaces of singularity. We assumed in Sec. 2 that our
kernels were continuous functions of their variables,
apart from certain explicitly exhibited singularities.
However, in Sec. 5 where we examined the full
Bethe-Salpeter equation with one-particle exchange,
the process of getting rid of the moving singularities
left us with a kernel which contained a delta function in
addition to fixed singularities due to the direct-
channel propagators. We manipulated as though
these expansions can be carried out even in the pres-
ence of delta functions. Such manipulations require
justification; let us see how to justify them.

Where functions of one variable are concerned, the
issue is trivial; we can always use the delta function to
perform the integration, for instance,

£(0) = g(x) + f K(x, )3y — ) f(y) dy
= g(x) + K(x, a)f(a).
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Put x =a: f(a) = (1 — K(a, a))'g(a), and, sub-
stituting back, we get the solution

g(a)
1 — K(a,a)

This example is completely trivial, but the process of
solving at one particular value and then computing
the general solution from the equation itself is quite
a general one, as we will see. Similarly, the solution of

f(x) = g(x) +

£(x) = g(x) + f K(x, 9)3(x — () dy,

N {€))
) 1 — K(x,x)

The simpler cases with functions of two variables
follow the same general lines:

SO, p) = glx, ») +”K(x, v, %,y
x 8(x' — Y)F(x', y') dx’ dy’
= g(x, ) + f K(x, y, x' ) f(x', x') dx’,

so that at y = x we have an ordinary one-dimensional
integral equation, from whose solution we can com-
pute f(x, y) from the equation itself. We deal similarly
with the slightly more complicated equation

£ p) = g(x, y) + f f K(x, y, X', ¥')

X O[F(x', y)If(x', ) dx" dy'.
The case of a “moving delta function™ is dealt with
similarly:

S(x, p) = g(x, ») +”K(x, ¥, x',y)
X 0(x — x)f(x', y')dx"dy
= g(x, y) + f K(x, y, x, y) f(x, y')y dy’,

and we have a straightforward one-dimensional
integral equation.

However, we run into trouble with the apparently
only slightly more complicated integral equation

fx, ) = g6 ) + f f K%, 3, 5 ¥)
8lx' — FLf(x's ') d'dy’,

which, when the delta function is used to perform one
integration, yields

f(X, Y) = g(x’ y)
+ j K(x, y, F(x), y) fIF(x), y'1dy'. (AS)
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This is not an integral equation in the normal sense
at all, because of the ““wrong” argument appearing in
the funder the integral sign. The best thing we can do
in order to get a true integral equation, albeit a two-
dimensional one, is to carry out a Fourier transforma-
tion on the variable x, yielding the integral equation

F(Z y) = g(% )
+ f f L(%, y, 4. y)f(q, ') dy’ dg, (A6)
where

L()E, v, 4, y«) =fK(x’ ¥, F(X), y/)eim‘:—in(ac) dx. (A7)

The kernel L(%, y, q, y') is not, of course, square
summable in all four variables at once, but is square
summable in (¥,y) and in (g, y), and will inherit
appropriate continuity properties from K. This gives
us the clue to the equation

f(x, y) = g(x, ) + f f K(x, y, %', y)S[F(x, )]
X f(x', y)dx' dy’

=g+ 3 f K(x, y, Fi(x), ¥)
x fIFi(x), y1dy,

where x’ = F/(x) are the various solutions of
F(x, x") = 0. The transformation, analogous to (A7),

(A8)

L%y, q,y)
= Zf K(x, y, F(x), y)e™ = eF =gy (A9)

yields an equation exactly analogous to (A6).
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Similarly, we may consider the generalization of (A8),
where the delta function involves y and y’ as well as x
and x':

flx,y) = glx, ) +ﬁK(x, v, x'y)
x 8[x" — F(x, y, y)If(x', y)dx" dy’
= g(x, y) + f K[x, y, F(x, y, y'), ¥']

X fIFCx, y, ¥, y'1dy,
where we transform the kernel by

L(X,y,q,)) = f Klx, y, F(x, 5, "), ¥']
X eizi—in(m,v,y') dx

(A10)

again obtaining an equation of the structure of (A6).
Finally, we can combine the last two cases to deal
with the most general possible delta function multi-
plying the kernel of a two-variable integral equation:

f(xa Y) = g(xs y) +ffK(x’ Vs x’, y,)

X O[F(x, y, x', yOIf(x', y) dx" dy’, (A1)
where we must solve the equation F(x, y, x’, ') =0
(say) for x’, with solutions (say) x' = F/(x, y, y").
Then the transformed kernel leading to the form
(A6) will be
L%, y,q9,)) = ZfK [x, », Fi(x, y, ¥, ¥']

% ez’.mZ—z‘qF,«’(z,y,y') dx.

(A12)

The generalization to integral equations involving
higher numbers of variables presents no new difficul-
ties and, hence, no new interest.
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The general description of a strongly inhomogeneous one-component plasma in the so-called ““ring”
approximation is derived. Using the general theory of inhomogeneous systems, the closed system of two
equations in one-particle phase space is obtained. The additional equation for some function, which
appears in the collisions term, has the form of a Vlasov equation linearized around the inhomogeneous
one-particle distribution function. The meaning of the parameters which appear in this equation is
discussed. This equation is solved in the hydrodynamic approximation. The collision operator in the
Markoffian limit reduces to the well-known form. The velocity distribution function for the inhomo-
geneous state is discussed and some additional terms to the usual Balescu-Guernsey-Lenard equation,
in the case of no square-integrable inhomogeneity factors, are obtained. The influence of initial correla-

tion is discussed.

1. INTRODUCTION

In recent years, the problem of the kinetic descrip-
tion of fully ionized plasmas has been studied inten-
sively. In 1960, the kinetic equation for a stable
homogeneous plasma was derived independently by
Balescu,! who wused the Prigogine perturbation
technique, and by Guernsey® and Lenard,?® starting
from the BBGKY hierarchy. This equation has been
rederived by Frieman* and Résibois® in non-Markof-
fian form and generalized by Balescu® to the case of
unstable plasmas. The first successful attempt to
describe the inhomogeneous system has been made by
Guernsey” for slightly inhomogeneous (linear in
inhomogeneity factor) plasma in a state close to
equilibrium. The generalization of this equation for
the case of a plasma far from equilibrium has been
done by Balescu and the author.??

From another side the work on the general theory
of inhomogeneous systems has recently made great
progress. The general master equation for an in-
homogeneous system has been derived by Severne!
and by Balescu,!* who discussed, in a very compact
and elegant way, the problem of the master equation
as well as the asymptotic kinetic equation for very
general statistical systems. The aim of the present
paper is to obtain a closed system of equations
describing an inhomogeneous plasma far from equilib-

* The main part of this work was done in Institute of Nuclear
Research, Warsaw, Poland.

t Permanent address: Institute of Nuclear Research, Warsaw—
Swierk, Poland.
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rium in the so-called ring approximation. We will
use here the perturbation technique introduced by
Prigogine et al.**'3 and will follow the general line of
the theory as presented by Balescu.’® We will here only
sketch the main points of the theory in order to
clarify the notation; for more detail, see Refs. 10-13.

For the sake of simplicity we will consider here a
system consisting of the electron gas imbedded in a
homogeneous continuous neutralizing background.
The generalization of most of the present results to the
case of a many-component plasma is straightforward.
We will indicate the points which are somewhat more
complicated in the multicomponent plasma case.

Our system is described by the Liouville equation
which can be written in the following form:

Lfy = (@, — £° — & fy, (1.1)
where
0= —>v,.V,,
C=m?32 V¥, 0,
i¥n
3 0 0 (1.2)
t= S i= 4
ot 0x;
0
0, =—, 9,,=90,—10,,
5 av, j

and the following obvious notation is used: m, e,
v;, and x; denote the mass, electric charge, velocity,
and position of particle j, respectively, and fy is the
N-particle distribution function.

The Coulomb interaction potential can be written
in the following form of Fourier transform:

1

Vin=—>"7
,x:i - x’nl

= (@27 f k® ke (1.3)

12}, Prigogine, Non-Equilibrium Statistical Mechanics (Inter-
science Publishers, Inc., New York, 1962).

13 R, Balescu, Sratistical Mechanics of Charged Particle (Inter-
science Publishers, Inc., New York, 1963).
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We introduce here the reduced one-particle distri-
bution function

Filkar Vs 1) = c[qo(va; ) + f dk py(v,: t)e“"*a} (1.4)

where @(v,; f) is the velocity-distribution function and
pi(¥,; 1) is the inhomogeneity factor.

According to Balescu,'* the space of distribution
functions can be divided into the correlated and
uncorrelated “‘subspaces.” Let us denote the “pro-
jection” operator on the uncorrelated subspace
(vacuum of correlations) by ¥ and the “projection’™
on the “orthogonal” correlation subspace by C.
These operators have the following properties:

V4+ C=1,
V2=V,
= cC, (1.5)
VC=CV=0.

The general master equation (which is completely
equivalent to the Liouville equation) can be written
in the following form:

Buf(t) = L%(0) + ELVIN(D) + f dr G(r)fy(t ~ )
+ R UNNCS ()

+ ftclr G(r)U(t — 1)Cf(0), (1.6)
0
where

G(t) = — f dz e S L(RY=)CE)"
2w Jo

n=1L

~L f dz e ly(2) (1.7)
2w

is the “irreducible evolution operator” such that its
V-V component is the diagonal fragment; its V-C
component together with the V-C component of the
fourth term on the left-hand side of Eq. (1.6) is the
destruction fragment,

R(z) = (—£0 — iz)™?
is the unperturbed resolvent operator, and

U%(t) = exp 7£°,

is, for 1 > 0, the inverse Laplace transform of R%(z).
The master equation for the uncorrelated N-particle
distribution function may be immediately obtained by
acting with the projection operator on Eq. (1.6):

V() = VD) + VLV
+ [;dr VGVt — ), (1.9)

o/

(1.8)

where, at the moment, all terms coming from the
initial correlation have been neglected. The contri-
bution of initial correlation will be discussed in

211

FiG. 1. Typical pseudo~
diagonal ring.

Sec. 6. The problem now reduces to finding operator
G(¢) in closed form. It is evident that it is impossible to
perform the summation on all possible irreducible
diagonal diagrams. We will use here the so-called
ring approximation. We will take into account only
the terms which are of the order e%(e%c). For a more
detailed discussion of this approximation, see Refs.
1 and 13. Here ¢ denotes the mean density
c= NQ1,

where £ is the volume of system.

The general contribution to collision-operator in
this approximation is shown in Fig. 1.

We would like to stress here that our considerations
are valid for a general inhomogeneous case. Up to now
no assumption of wide separation between the
molecular and hydrodynamical scale has been
introduced.

(1.10)

2. SUMMATION OF RING DIAGRAMS

The collision term in Eq. (1.9) may be rewritten in a
somewhat more convenient form:

J(; drV GVt — 1)

_ 51; f e dzV p(2)Vf(2)

t
-1 f dz J e L () V(). (2.1)
27 0

We are interested only in the contribution to the
reduced one-particle distribution function. We can
perform the integration over positions and velocities
of all particles except particles with subscript «.
After this integration, we may omit the operator V
acting on the left:

-V J' dx, - - - dxy_, [ dvy - - dvy_,

X J;dTVG(T)VfN(t —7)

¢
= _L d,f e~ i#= (—(N-1)
2w 0

X fdx1 dXy oy dvy o dvy w(2D) V() dr

t
= _1_ fdzf e‘e’z“_’)Q(Z,’T) dr. (22)
2 0
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Let us perform now the Fourier transform of Eq. (2.2)
with respect to the position x,:

1 k-

oo f dx, e *%Q(z, 7). (2.3)
The typical contribution to QOy(v,, 2z, 7) has been
shown in Fig. 1. Now the problem is reduced to the
summation of all inhomogeneous ring diagrams.

In order to evaluate this contribution we will use
here the procedure of summation developed in Ref. 9
and based on the Résibois factorization theorem.®

Let us consider the disconnected diagram which
consists of two subdiagrams. A diagram in which all
vertices of one subdiagram are placed to the left of all
the vertices of the second subdiagram will be called a
primitive diagram. The set of diagrams which is
obtained by permutation of the relative position of the
vertices of one subdiagram with respect to the vertices
of the second one (the order of vertices of each sub-
diagram separately remaining unchanged) is called
the permutation class of diagrams generated by the
primitive one. According to Résibois’s theorem, 13 the
contribution to the whole permutation class is equal to
the convolution of the contributions of the two
subdiagrams.

In our case, we may simply use the Résibois
theorem by separating out a common factor in all
diagrams. The contribution Q(«, z, 7) may indeed be
written in the following way:

Ou(e, z,7)

=iw§fl‘2dll-a,fdv

xf(dZ,/27T)Pk+l(q, \T Z')P—l(p’ vV, 2 — Z,)wnq(T)’
(2.4)

where the operator P, (p, «, 7) acting on some function
of p, v, and 7, say %,(7), is determined by a series of
diagrams shown in Fig. 2. The function y,,(7) is
represented diagrammatically in Fig. 3. In this figure we
use the notation that brackets demnote that only the
respective vertex is taken into account. We may express
Vpa(#1, m, 7) analytically in the following form:

Qk(va s 25 7') =

Yoo, m, 7)

e2

= r_n_ {_ Vpip * 0 (s T)(m; 7)0p4 4

+ Vaiq . anmPlH-q(n; T)‘P(m; 7)
- I/plq * anmpp+q(m; T)¢("’ T)

+ f AUV 1+ By (3 DIpyr(m ﬂ}, @.5)

V, = 2n¥)~U2

A. KUSZELL

————If | X+ S e px"'?_é‘pr’—é‘: X +...

4

Fi1G. 2. Series of contributions to Px(p, «, z).

We have to notice here that one must carefully
handle Eq. (2.4) because in the case k = 0 the homo-
geneous ring will be taken into account.

One may immediately recognize that the term

Pk +Lnz)P_(~L,mz—2)

X {(—e¥m)Viik - 8, ¢(n; T)g(m; )0k (2.6)
gives us exactly the homogeneous collision operator
multiplied by 4, .

The series of diagrams shown in Fig. (2) may be
summed, and as a result we obtain the following
integral equation for P,(m, «, z)x(«, 7),.x(a) being an
arbitrary function of m, v,, and 7:

P (m, o, z)x(xx)

x(or)

T ik-v, — z]

- __1_Lfdzrfdl
ifkev, — z] 27

x f dvl{l‘zw,?(— 1)+ 8,Ry_y(a, 7 — 2')P(m, 1, 2')x(1)

2

w
+ —22 i1 —K).9,R, 1,z —z'
T =0 R(1,2 — 2)

Eo_ik-azqi(oc;r)
K kev,—z

dv,P,(m, 1, z)x(1)

x Py(m,a, z’)x(a)}, @1

where R, («, z) is the solution to the nonlinear Vlasov
equation with the following initial condition:

Rl 6)|e=0 = py(o; 7), (2.8)
where by Ry(x,0) we have denoted the inverse
Laplace transform of Ry(«, z). Equation (2.7) has the
form of Vlasov equation linearized around the
function Ry(«, z), with the initial condition

Fu(m, o, 0)x(a0)|go = x(). 2.9)

[Obviously F,(m, a, O)x(«) is the inverse Laplace
transform of P (m, «, z)x(x).]
The description of the inhomogeneous plasma is

n

Yoo (nm)s| P So. $(m ) 2
- ? seq P(n) Pmi+ % P,,q(“)¢("‘)
n m n-~,
a-

FiG. 3. Diagrammatic representation of function ypq(n, m).
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now completed by this system of equations: the
kinetic equation (1.9), the nonlinear Vlasov equation
for the function Ry(«, z), and Eq. (2.7). Because the
nonlinear Viasov equation, as well as the one linear-
ized around the inhomogeneous distribution function,
can not be solved analytically, we have to look for
some approximations. Let us consider first the non-
linear Vlasov equation. We note here that the function
pxle; 8 + 7) is a short-time solution of the kinetic
equation with the initial condition py(a; 7). This is
exactly the initial condition (2.8). From this fact we
can conclude that R, («, ) differs from p,(o; 7 + 0)
only by terms of order e? (because f + 7 is short).
As far as the ring approximation is concerned, we
need only terms of order up to e? in the kinetic equa-
tion. Adding a term of order e? to Ry(«, 6) in the
collision term produces a change of the latter only in
the order > e* and so is beyond our order of accuracy.
In concluding, we may write

Ru(e3 0) = py(oc; 0+ 7). (2.10)

In order to eliminate the difficulties coming from the
distinct treatment of the different component of the
one-particle distribution function, we will take into
account ¢(x; 6 4 7) instead of g(a; 7). The difference
in the collision term is also at least of fourth order in e.
Using this approximation, we are left with only two
equations; the kinetic equation (1.9) and the equation
for 9, (m, «, O)x(=) in the following form:

(@ + K - V), o3 0)x(x)
=i} f 2 1L 3,{p(03 0 + D)0 + P 0 + 7))

x f dv, S, (m, 1; )x(1)

Y B ,
_,wpf T =085 % 03w

x f A1 0 + 7), @.11)

with the initial condition (2.9).

The physical meaning of this equation and the
possible way of its approximate solution will be
discussed in the next section.

3. DISCUSSION OF LINEARIZED VLASOV
EQUATION

Equation (2.11) may be rewritten in the position
representation as follows:

(ao + Vo © Va)g\(xa s Voo B)X(Ol)
- (e/m)E(l)(xa H 0)aaf(xa > Vas 0)

— (e/m)E(x,, 0)8F(x,, v,, O)x(x) = 0, (3.1)
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where f is connected with ¢ and p, by relation (1.4).
The two electric fields appearing in (3.1) are deter-
mined by the following equations:

Va * E(xa » 6)

- 47Te.[[f(xa,va; 6+ 7) — cg(v,; 0 +D]dv, (3.2)
and

V,.E"(x,, 6) = dme f (X, Vo, O)x(2) dv,. (3.3)

For Eq. (3.1) the field E [which is the Vlasov self-
consistent field generated by the distribution f(x,,
v,; )] may be considered as the external field and E‘V
plays the role of the self-consistent field generated by
the function ¥, .

This field describes the collective effects which
appear during the collision. The nature of these two
fields seems to be quite different and it will be interest-
ing to investigate in more detail their physical role.
For Eq. (3.1) we have still to find the appropriate
initial condition. This is done by the inverse Fourier
transform of y,, defined by Eq. (2.5):

Q/)(Xa, vm’ xﬁ’ vﬁa T)
= (=1/mcAWV,V(Ix, — X8, (X5 V5 ) (X5, Vg3 1)
= yla, §; 7). (3.4)

In order to better understand the meaning of the
operator T(x,, v,; 0), as well as the form of the initial
condition (3.4) and of the collision operator, the
explicit calculation of the contributions of certain
simple diagrams in the position representation has
been done in the Appendix.

The collision operator, as well as the two-particle
correlation function,'® may be constructed from this
operator. From the other side, the kernel in the
collision term vanishes for times greater than the
collision time ¢, . But we have also another char-
acteristic time in our system: the hydrodynamical time.
This time is supposed to be the natural time scale of
change of the function f(x, 6;¢). In many physical
situations we may assume that

tn >> tcoll . (3'5)

As we have already mentioned, Ty(x, 3, 7) is a
component of the correlation function. It means that
the natural scale of its x dependence is the range of
correlations L, . This fact may be easily deduced from
the collision operator in the form given by (2.4).
Following the arguments of Balescu,'® we may deduce
that

1~ (L/L)k (3.6)
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and this in nothing else but the introduction of the
two natural scales in x dependence. There exist many
physical situations where we may assume that

A=LJL, &1 G.7)

The natural way of solving Eq. (3.1) is the separa-
tion of the x dependence in fast and slow dependence
as it has been used by Klimontovitch."* We will
adopt here the multiscale perturbation introduced by
Bogoliubov and used by Frieman* for the solution of
BBGKY hierarchy. It occurs, however, that the most
suitable starting point of that technique is not Eq.
(3.1) but Eq. (2.7) with R,(v) determined by the
nonlinear Vlasov equation. In the (x,v) space the
system of equations to be solved is ‘

0, +v-Vf— (e/mE-3f =0 (3.8)
and
0p(Px + v +-VPx — (e/mE - 0Px
— (e/m)EV -8f =0, (3.9

where we use the notation
f= cIZ«p(v; 6) + f dkR.(v; 6)e“""} (3.10)

and E is Vlasov field induced by f.

We may regard the field E in Egs. (3.8) and (3.9) as
an external field, and, according to the discussion of
the previous paragraph, we may substitute E for E.

We assume now that all functions have their
x dependence separated in different scales A(x,,
Xy, ' - A"x,), where, after the whole calculation is
finished, we are going to put

axn/8x= 1, 0.1.2
x,0) =0 "T AT

From our discussion it is clear that the one-particle
distribution function depends only on slow variables,
sO we may assume their perturbation expansion in the
following form:

(3.11)

f(x,v,0) = % A0, A, v5 6). (3.12)
n=0
The expansion for (9/0x)f may be written in the form
(see Ref. 4)
a . 0
L=
axf 2

n=1

0 rlas
Py —— " (APx,, v 0). (3.13
2 a(m*xs)f (A7xp,v36). (3.13)
The analogous expansion of Ty has the following
form:

Fx =3 1T (xg, -+, A%, -, v; 0)x  (3.14)
n=0

4 Yu. L. Klimontovitch, Statistichiskaya Teoriya Niravnavisnich
Protsisav  Plasmi (Moskovskova Gasudarstinnova Universiteta,
Moskva, 1964).
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and for the field
Lo s}
EV = S VEX(x,, 1, A, 000, v; 0), (3.15)
n=0

where the relations between the E{Y and $™x are of
the type (3.3). The respective expansion for gradients
may be written as follows:

Wx _ o 0

0X a=0 =0 0(Ax,)

Substituting the above expansion into Egs. (3.8)
and (3.9) and ordering with respect to A, we obtain an
infinite set of equations. Because Eqs. (3.8) and (3.9)
have nonconstant coefficients, we cannot split the
equation in each order by equating to zero the
contribution of each function with subscript / sepa-
rately as is usually done. In our case, we consider,
rather, in the equation of order /, the contribution
coming from a function of order </ as an inhomo-
geneous term in the equation. In the lowest order the
equations have the following form:

or°/ot — (e/m)E - 3f°(Ax,, v; ) = 0 (3.17)

f\(n—»s)x

(3.16)

and
09%y[0t + v - VT — (e/m)ET

— (¢/m)EP9f° = 0, (3.18)
where

(3.19)

Because the operators in the above equations are
diagonal in x;, for /> 1, we can consider these
variables as parameters.

The field E induced by the function f may be
assumed to depend only on the variables Ax;. This
system of equations describes the plasma oscillation
in the presence of a uniform external field and, in the
case of a one-component plasma, it may be solved
analytically.’® At this point, our approximation can
not be applied to a many-component plasma. In that
case the system of equations, analogous to (3.17) and
(3.18), cannot be solved analytically and some
approximation has to be applied.!®

The solution of Eq. (3.15) may be found immed-
iately:

o, 0) = f(x, v, — M3 7), (3.20)
where we have denoted
]
n6) =< f E(t) dt'. (3.21)
m Jo

Substituting this result into Eq. (3.18) and performing

15 B. P. Fried, H. Gell-Mann, J. D. Jacson, and H. W. Wyld,
J. Nucl. Energy C1, 190 (1960).

16 A, Kuszell and A. Senatorski, Institute of Nuclear Research,
Report P. No. 829, Warsaw, 1967.
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the change of variables

u=y, -1,
0" =9, (3.22)
we get Eq. (3.18) in the following form:
9,9% + (u + ) - k¥
— (e/mEM(K) - 8f (x,,u,7) = 0, (3.23)

where we have performed a Fourier transform with
respect to X.
By a simple substitution

Fox = exp —ik -ﬁan(ﬂ’) do'é(a, 0), (3.24)

we get immediately the equation for ¢ in the very
familiar form
Os¢b + iu-ké — (e/m)&-8f(x,,u,7) =0,

where

(3.25)

k8= 47refq$ du. (3.26)

We may immediately write the solution of this
equation (see, for example, Ref. 13) in the following
form:

— i dz e—izﬂ( x(u) + ﬁ k- af(xl » U, T)
27 ifk-u—z] ck?

where the dielectric constant is defined as follows:
Q?L k- 0f(x;, u, 7)™
ck? (k u—2z)

Finally, we obtain the following formula for ¥x,
where we have put x; = x, = x,:

ken—z

e(xy,2) =1 — (3.28)

Tex(a)
= exp (-—ik -fon(t’) dt’)2i
deZ e—izo{ . x(va —_ ”l)
ik (v, —m) — 2]
wp K0, f (X, Va—m57) 1 x(v) dv
+ ck® ke(v, —m) —z elx,, z)fi[k-v - z]}'
(3.29)

The solution (3.29) yields a very complicated collision
operator in non-Markoffian form. It seems, however,
that there may exist cases of some physical importance
in which one cannot neglect the contributions coming
from the field E (the % terms) in (3.27). Even within
the hydrodynamic approximation in some cases the
change of the distribution function due to the Vlasov
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field E during the collision cannot be neglected. In
such case (separation of electric charge) the proper
description is given by the collision terms of the type
produced by (3.29). But in the cases where the separa-
tion of charges does not appear, we may neglect v in
(3.29) and we got a much simpler expression for ¥x:

0 — x(vu)
Tx(v,, z) = __—i[k p—
w5 K 0,f (X4, Va3 7) x(v) dv .
+ ck® k.v,—z {fi(k ‘v — z)}/ e 2)

(3.30)

We must mention here that, in order-to be consistent
with our expansion in A”, we have to neglect the x,
dependence in the one-particle distribution function
in the initial condition y(a, f).

There is in principle no difficulty in calculating 'y
to higher order of 4.

4. THE KINETIC EQUATION

By integrating Eq. (1.9) over positions and velocities
of all particles except the one denoted by subscript «,
we immediately obtain the kinetic equation in the
following form:

0,/ (@) + v, + V[ (o) — ﬁ E-8,f()

t
-1 f dz f dr e 0Q(z, 1), (4.1)
27 0

where Q(z, 7) is determined by (2.4). For a more
detailed discussion of the identity

_LE.8,f(0) = QN f dx, - dxy_y
m

x f vy dvy Ve VEy (4.2)

see Ref. 11.
We may now express the collision operator in the
term of #(x, 0, z) operators (see Appendix). The
kinetic equation may be written in the following form:

atf(xfl’ vu; t) + va M Vazf(xa’ va; t)
2
_£ 0,/ (X,,V,; 1) Vafdx avv(ix, — xi)
m
X [f(x,v; 1) — co(v,, D]
2
=-£¢ f A V(i1 8, [-4L groxo
m (27)®
! t
o] & [ ['g o
20 ) 27 Jo

X P(X,, v, 25 7)P(y, v,z — z2'5 D)9(X,, V,, ¥, V3 7),
(4.3)
where we have written the Vlasov term explicitly.
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Equation (4.3), together with Eq. (3.1), form the
complete general kinetic description of the inhomo-
geneous plasma in the ring approximation. Up to now
the only assumption we have made is that we can
neglect the influence of initial correlations. The
physical picture described by these equations is the
interaction of plasma waves described by Eq. (3.1)
which forms the collision operator in Eq. (4.3). These
are rather complicated, non-Markoffian equations
but they are the proper starting point for all approxi-
mations. We will show here how these equations in the
Markoffian hydrodynamic approximation reduce to
the well-known results.

The very first step is the change of variable in
Eq. (4.3)

4.4)
and the neglect of the = dependence in the one-particle
function.

Because the only dependence of = is through the
one-particle distribution function, after neglecting
this dependence, we are left with the term e*" alone,
and we are able to perform the r-integration explicity.
The collision term can be written in the following

form:
(a—f) _ e J AV (il d f o
0t Jeoll 27)?

dZ e —izi

f fZW lzf_P(xaaVu, z', 1)

X P(y,v, z Z2', (X, ¥y, ¥, Vs 1)

In this collision term all transient effects, which are
inconsistent with the asymptotic form of kinetic
equations, are still taken into account. For the sake of
simplicity we assume here that the plasma is stable.
In the unstable (or weakly stable) case we have to
take into account additional contributions, similarly
as in the homogeneous case.®

Our assumption that the plasma is stable means
that all the poles of P(x,v, z)y are located in the
lower half plane z and that

[Imz|>» o,,

T =t—T7

(4.5)

(4.6)

where z, denotes the pole of Py closest to the real axis.
In this case, for large + we may neglect the contribu-
tion coming from these poles and take into account
only the pole z = 0:

(g_{)cou= fdl VDil-9 J
fdvf _P(Xa,va, 1)

X P(Ys v, — Z s t)w(xa5 vw y’ v; t)

1l (y—x,)

.7
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To be consistent with Eq. (4.7), we have to perform
the same approximation for Eq. (3.1). As it has been
discussed in the preceding paragraph, the neglect of
the change of the function f during the collision is
possible only for a weak self-consistent field. In such
cases we neglect the time dependence of fin (3.1) and
drop the term with E.

The simplified equation for Px has now the form
(aB + A\ Va)[‘]‘(xzz’ Vo> 6)x

— (e/mEM(x,, 0) - 8,1 (x,, V., ) = 0, (4.8)
where 6 denotes the Laplace variable conjugate to z.
This system of equations is much simpler than previ-
ous one, but again Eq. (4.8) has no known analytical
solution.

We would like to mention here that the discussion
of the present paragraph is in some sense comple-
mentary to the previous one. Applying both approxi-
mations (Markoffian and hydrodynamical) together
yields the solution of Eq. (4.8) in the hydrodynamic
approximation which has already been obtained in
Eq. (3.28).

Using this solution, we obtain the collision operator
in the following form:

3 4
(af) =—Sliiflez(l)l-aafdvlfdvz
ot coll c m?

vy — v,)
{il < (v — Va)(x,, —1evy, 1)
EO__; gz_’l'aaf(xa’vaat)
B clzj

27 efx, z', B)I®

X [Qev, —z)lovy — 2) v, — Z')]_l}

X A6+ Bya f(Xes V15 D (Xg5 Vo5 1), (4.9)
where we have taken into account the following
property of the dielectric constant:

e(x, —z; 1) = € (X, 2, ), (4.10)
where the asterisk denotes the complex conjugate.
This solution has the form obtained by Résibois?13
in the case of a homogeneous plasma with the only
difference that f(x, v, t) replaces ¢(v, t). This contri-
bution may be written in much simpler form, because
only the real part of the collision operator gives a
nonvanishing contribution (for a detailed discussion
see Balescu.!® We will not repeat here this calculation,
but give only the final result:

0 2
(61’) = 874e4m_2fdlfdvll . aa{—V(l)——}
at 0011 lel(x, l ¢ va’ t)‘

X 6(1 Ve = Vi1 8, (e, Vo3 DF (Xg, Vi3 1) (4.11)
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and one can immediately recognize that this is
exactly the form of the kinetic equation in hydro-
dynamic approximation given by Balescu'®),

We would like to stress here that, in the general
physical situation, the correct kinetic description is
given by Egs. (3.1) and (4.3). In some cases, it may be
simplified either by a hydrodynamical or by a Markof-
fian type of approximation. In both limits together
the known result is rederived.

It seems to be very important to clarify the role of
the field E in Eq. (3.1). This field may play an import-
ant role in the case of large charge separation and in
instabilities connected with this separation. It seems
that this problem may be even discussed in the
hydrodynamic approximation.

5. THE VELOCITY DISTRIBUTION
FUNCTION

The velocity distribution function in the inhomo-
geneous system does not always behave as the distri-
bution function in the homogeneous state. The
behavior of the velocity distribution function depends
on the inhomogeneity factor. For inhomogeneity
factors, whose Fourier transforms are the ordinary
functions, there is no difference between these two
functions. But if we take into account the more
general case, where the Fourier transform of an
inhomogeneity factor is a distribution (for example,
of the type of Heaviside step function), the time
evolution of the velocity distribution function is no
longer determined by this function alone, but also by
the inhomogeneity factor.

In some cases of physical interest (for example,
two adjacent half spaces, each in equilibrium with
different temperatures) the inhomogeneity factor is of
general type. This problem in the frame of Vlasov
approximation has been discussed by Grecos.'?

The main point is that, for such inhomogeneity,
factor p, is no longer a function but a distribution in
the Schwartz sense and because of the property

(5.1)

their product is illdefined and proportional to Q
This is the reason why the usual Q dependence analysis
fails and one has to take into account additional
diagrams of the type shown in Fig. 4.

As can be easily seen, however, inclusion of those
diagrams does not change either the summation
technique for an inhomogeneous plasma or the result
of this summation. This is because these diagrams
complete the respective inhomogeneous contribution.’”

pe(@) = Pfk(a),

17 A. P. Grecos, Ph.D. thesis, Université Libre de Bruxelles, 1968.
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FiG. 4. Contributions to ¢(x)
for general inhomogeneity factor.

Our Egs. (3.1) and (4.3) are valid as well as in this
more general case. In order to obtain the proper
evolution equation for the velocity distribution
function, we have to integrate Eq. (4.3). From the
definition we have

o(v; 1) = Q! f dxf(x, v: 1). (5.2)

The equation for ¢(v; t) has the following form:

0,(vy; 1) — £ o f dx, E(x,; )0,H(x,, V,; 1)
m
e dy
— Q dalvDil.
m f o L%f

< [ar[ [ [aresrpee v,z

X P(y, v,z — z', D)9(X,, V., ¥, V5 7), (5.3)

dxa eil-(y—x,)

where by H(x,v;?) we denote the inhomogeneity
factor.

The most important point in our discussion is that
in the case of non-square-integrable inhomogeneity
factors, the evolution of the velocity distribution
function canhot be regarded as independent of
inhomogeneity factor. In other words the Balescu—
Guernsey-Lenard equation is valid only for square-
integrable inhomogeneity factors. The physical
meaning of this limitation is clear, because square
integrability means that, in some sense, the inhomo-
geneity is localized, and its influence on the infinite
homogeneous background is negligible. We would
like to mention here that the second term of (5.3) is
exactly the starting point of the quasilinear theory
derived by Vedenov, Velikov, and Sagdeev’® and by
Drumond and Pines.*?

6. EFFECT OF INITIAL CORRELATIONS

In order to make our consideration more complete,
we discuss now the effect of initial correlations. The
contribution of the initial correlation in the general
case has been discussed recently by Balescu.?® Follow-
ing this discussion, we can take into account only the

18 A. A. Vedenov, E. P. Velikov, and R. Z. Sagdeev, Proc. Conf.
Plasma Phys. Cont. Nucl. Fusion, Salzbourg, 1961, paper CN-10/
199.

*W. E. Drumond and O. Pines, Proc. Conf. Plasma Phys.
Contr. Nucl. Fusion, Salzbourg, 1961, paper CN-10/134,

20 R. Balescu, Physica 36, 433 (1967).
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F1G. 5. Ring con-
tribution to destruc-
tion fragment.

<<
=

systems in which the correlations are due to inter-
actions, and in that case their contribution disappears
after a collision time. The contribution due to the
initial correlation is described by the two left terms
in Eq. (1.6) and is called the destruction fragment.
This contribution in ring approximation (and addi-
tional assumption of very short collision time) consists
of diagrams of the type shown in Fig. 5, where the
arrow denotes the lines acting on irreducible two-
particle correlation.

A similar approximation has been studied in the
homogeneous state by Nishikava and Osaka®! and
they find that this description is inadequate in the
case of unstable plasmas, because the destruction
term is exponentionally growing in time with constant-
growing ratio. This difficulty may be solved by
taking into account the diagrams of the type shown in
Fig. 6.22 This means, however, that one can no longer
consider the time of the influence of initial correlation
as short. In fact, this time is of the order of the
stabilizing time. A similar argument may be used
for the collision term; this case will be discussed in
the next section.

The contributions to destruction fragment, which
has the ring placed on the lines acting on two-particle
correlation functions, are not taken into account,
because their contribution is due to irreducible ternary
correlation approximation. It will be interesting to
examine the contribution of a ternary correlation
function in the case of unstable plasmas, but in our
paper we shall limit ourselves only to the ring approxi-
mation.

The summation procedure used in Sec. 2 may be
used successfully in the present case and the result is

1
0p = i [~ daes vy vy

X V{e2§;’U0(t) + L dr Gt — c)}C fx(0)

2
= f dk ¢ f 9z i O J dli.9,
27 ilk-v, — z]

dZ’ ' ’
X fdvlf; TP, @, 2)T4(q, 1,z — 2)

X ppq(, 15 0), (6.1)

2L K. Nishikava and Y. Osaka, Progr. Theor. Phys. (Kyoto) 33,
402 (1965).
22 R. Balescu (private communication).
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where p, .(«, 1;0) denote the Fourier transform of
the irreducible two-particle correlation function and
the operator T is defined similarly as P in Eq. (2.4).

Letting the operator 9, + v,V,, act on both sides
of (6.1), we can write the contribution to kinetic
equation in the following form:

(al) = f dk ? [ 2" By (P, %5 1)
D o

ot
X Glq, d; D)py o(x, 15 0),

where Gy (q, 1;1) is the Laplace transform of the
operator T, (g, 1, z) and is the solution of the integral
equation

(0, + ik « vy G (p, &; 1)x(a0)
= iwf,fl‘zl R CHI LT - )

(6.2)

X fdvl"G,(p, 1; H)x(1) + iw?

dl
X f(“ — Wy (1 — k) 3,B,(p, «, t)x(a)

x f dv,pes(15 ), (63)
with the following initial condition
Bu(p, a3 Dx(0)] 10 = x(a), (6.4)

and where x(a) is an arbitrary function. Equation (6.3)
is very similar to (2.11) with the difference of the
coefficient. In (2.11) the function ¢ and p, has been
taken in the point 6 4 7.

In the stable case we can use again the argument
that the time is short and we may neglect the terms of
the order €2 in (6.3). As has been already mentioned
in previous paragraphs, this is equivalent to replacing
the functions ¢ and py, the solution of kinetic equa-
tion, by the solution of nonlinear Vlasov equation
with the appropriate initial condition.

In our case

F(%, V3 Do = £(x, v5 0),

where we use here the notation of Sec. 3.

Again, in this situation the hydrodynamic approxi-
mation may be used and we may obtain the solution
to Eq. (6.3) in closed form. The solution should be

(6.5)

FiG. 6. Long-term
contribution to de-
struction fragment.
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exactly of the form (3.29), where we replace operator
T by G, f(x,vy—m;7) by f(x,¥y —1,0), and E in
Eq. (3.21) by the solution of the following equation:

V.E = ——ynede[f(X, v;t) — cop(v;t)]. (6.6)

The above solution permits us to write the contri-
bution to Kinetic equation Q, in the stable hydrody-
namic case. In the unstable case, we can no longer
use the Vlasov equation for function f instead of
kinetic equation and Eq. (6.3) has to be solved.

7. THE UNSTABLE PLASMAS

In the previous paragraph we have discussed the
contribution of initial correlations to the evolution of
one-particle distribution functions. It occurs that in
the unstable case one cannot neglect this contribution
and one has to regard the lifetime of initial correlations
as long time. This leads to the inclusion of the diagram
of the type shown in Fig. 6 into the destruction frag-
ment. Similar analysis shows that in the unstable case
we have to consider the collision time as a long one
(of the order of stabilization time) and, by a similar
argument, the new contributions to the collision
operator (of the form shown in Fig. 7) have to be
included. One immediately recognizes, however, that
inclusion of this diagram is nothing else than the
exchange for function R, (z) by px(z) and ¢(7) by
@(z, 7) in formula (2.4).

In other words, the collision term for unstable
plasmas is described by Eq. (3.11). But in this
case we no longer have freedom to exchange the
function p, by R

This means that the approximation proposed in
Sec. 3 is not valid and the system has to be described
by two couple equations. Also, in the unstable case
the destruction fragments have to be taken into
account.
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APPENDIX

In order to illustrate the meaning of the operator
P(x,v,,z) and of the function wu(x,,V,, XpXg, T)
we shall calculate the CXpllClt contribution of some
simple diagram represented in Fig. 8. We may write
this contribution in the following form:

2.2
0 = e—cfdk e"""‘“J‘dl [7%1- aafdvl
m

Xf dz dz" dv,
2ri[—lev, — z + =

deq mV(q)iq- 0, -
i(qevy—z 4+ 2"+ 2")

1 1
ql-vi —z+ 20k +1]-v, — 2)

X
i(ll+

xfdpm*vup —q—1)ip—q—1

(1) (2)

) aaupkﬂ—v—q(“)/’—ppq . (A1)

We may transform the expression (Al), introducing
the unit operators {dk’6(k + 1 — k') and {dl'6(1 +
p — I') and taking an appropriate Fourier representa-
tion of the é function, to the following form:

@——- Aty chlvlfdzfd“”
f dv, f dq—————— m ¥ (g)
l

X Gny fdxfdyé(xa — x)eh %

1
v,) (A2
i[q-vz——z-l—z’—}—z"]pq(- (A2)

q-0,5,(x; 2)E(y; 29X, Vs ¥, o),
where we denote by w, the contribution to w(«, 5)
due to our diagram (Fig. 8):

X ey

wl(xa’ Voo xﬂ > vﬂ)
2
- ;egzvaV(fX, — Xgl) - O HH(B). (A3)

where H(x) is the inhomogeneity factor.
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The operator E is defined by its acting in the
Fourier space in the following way:

E,(x, 2)$(x) = f dk ex ——

o T e (a9

where ¢, () denote the Fourier transform of an
arbitrary ¢(x).

It may be easily seen that the function determined
by the relation

E(x, 2) = f dq V(q)ige™ f dv, —La¥)

il[q-v, — 7]

(AS5)

represents the contribution to the electric field
E(x, z) due to our diagram.

Ly

FiG. 9. Contribution to Py, coming from diagram shown in Fig. 5.

A. KUSZELL

Finally, ©® may be written in the following form:

2.2 !
0= [avuil-a, f dz' [_dy f dy, ¢z
27 J (2m)®

m
— n € dZ” — ’ ’ ”
=a<xa;z)—f—=l<y,z—z)alE(y,z—z — 2%)
m 2

X Ei(Y, 209X, 5 Vo5 ¥, V). (A6)

From this form one can easily deduce the meaning
of all quantities introduced in the paper. One recog-
nizes that E_(x,, z’) is the contribution to the operator
P(x,, v,, z') due to the simple propagator alone and
that

— ~n € dZ” ' "= "
E(y,z—z)— f——arE(y,z —z' — 2By, z
mJ) 2w

(AT)

is the contribution to P(y,v,,z — z') due to the
diagram shown in Fig. 9.
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It is shown that, in the boson-operator realization, the state vectors of the unitary groups U,—in the

canonical chain U, > U, ;> -

> U,—can be obtained ab initio by a combinatorial probabilistic

method. From the Weyl branching law, a general state vector in U, is uniquely specified in the canonical
chain; the algebraic determination of such a general state vector is in principle known (Cartan-Main
theorem) from the state vector of highest weight; the explicit procedure is a generalization of the SU(2)
lowering-operator technique. Fhe present combinatorial method gives the normalization of these state
vectors in terms of a new generalization of the combinatorial entity, the Nakayama hook, which
generalization arises ab initio from a probabilistic argument in a natural way in the lowering procedure.
It is the advantage of our general hook concept that it recasts those known algebraic results into a most
economical algorithm which clarifies the structure of the boson-operator realization of the U,

representations.

In the past few years there has been strong research
interest centering about the general problem of the
structural properties of the unitary groups—a more
familiar rubric for this research is that it aims at the
generalization of the angular-momentum calculus to
all SU(n). The research problems that arise in this
generalization are more or less familiar: the explicit
construction of state vectors (in particular, the boson-
operator realization) the determination of the matrices
of the generators, construction of general representa-
tion matrices, the classification and construction for
tensor operators, etc. It is evident that such research is
relevant to particular problems (and associated
symmetry groups) in physics, such as *“‘the eight-fold
way” SU(3)/Z(3), SU(6), - - - ; it is less evident that
the structural properties for arbitrarily large U(n)
can be relevant to physics as models for separable
Hilbert spaces. It is this latter view which underlies
the present paper for we have in mind results not only
for special values (n =2, 3, 6,- ) but also insist
that the structural properties of the general case be
clearly in evidence.

The present paper is concerned with a detailed
discussion of the boson-operator realization of the
state vectors of all U(n). In an earlier! paper we found
for the semimaximal states of U(n)—those states for
which the U(n — 1) subgroup is maximal—that there
existed a remarkably simple, yet comprehensive,
technique: that of the generalized hook and the hook
measure. This result was merely asserted in our earlier

* Supported in part by the Army Research Office (Durham) and
the National Science Foundation.

t Excerpted in part from the Ph.D. thesis presented by M. Ciftan
to Duke University, Durham, North Carolina, 1967.

1 Present address: Department of Physics, Indiana University,
Bloomington, Indiana.

1 G. E. Baird and L. C. Biedenharn, J. Math. Phys. 4, 1449 (1963).

work; the present paper contains, first of all, a careful
proof of these earlier results.

Since we are primarily concerned with structural
properties, our proof is designed to show a close
relationship to the classical result of Young and
Robinson in the theory of the symmetric group. (It is
not commonly realized how many of the results in the
recent literature are classical in content.?)

It is a second purpose of this article to show
existence of a combinatorial rationale for the structure
upon which the states of U(n) are built. A few calcula-
tions in U(2) and U(3) suffice to make clear that the
complexity of the computations increases extremely
rapidly from U(2) to U(3) and beyond. The combina-
torial method greatly simplifies the process of deter-
mination of the explicit algebraic expressions of U(n)
states including their normalization constants.

We take as our point of departure the results in
Robinson’s book,* which emphasize the method of
hooks in the representation theory of the symmetric
group and the general linear group. However, the
hook in its original form—the Nakayama hook—is
not sufficient for the boson-operator realization of
U(n) states; therefore we introduce a particular
generalization of the Nakayama-hook concept. It
will be seen that the hook is a remarkable combina-
torial entity, and in its present generalized form it
reveals the underlying structural content of the
boson-operator realization of the representations of
U(n).

2 Refer, for example, to: H. Weyl, Classical Groups (Princeton
University Press, 1946); D. E. Littlewood, The Theory of Group
Characters (Oxford University, Clarendon Press London, 1958);
Major P. A. MacMahon, Combinatory Analysis (Chelsea Publishing
Co., New York, 1960).

3 G. de B. Robinson, Representation Theory of the Symmetric
Group (University of Toronto Press, Toronto, Canada, 1961).
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We first present (in Sec. I) the hook method which
provides an algorithm for the construction of semi-
maximal U(n) states; only afterwards do we give the
proof of the validity of this algorithm by explicitly
constructing the corresponding U(n) states using
the familiar lowering-operator technique of SU(2)
angular-momentum theory extended to SU(n). It
must be borne in mind that by using the classical
results of Cartan, all the states can be obtained from
the highest-weight vector (the state of highest weight)
by means of the generators. Therefore the use of
lowering operators as such does not constitute a
novelty and we avail ourselves of the existing results—
particularly one set of lowering operators—to achieve
a most economical proof of the hook algorithm;
however, we use the lowering operators in a novel
combinatorial context which clarifies the meaning of
the hook and the combinatorial structure of these
U(n) states. This last aspect is particularly interesting
in view of modern developments* in combinatorial
analysis which have freed combinatorics from being
merely a tool of enumeration by establishing close
connection to group structure and geometry. Apart
from shedding light on the structure, this combina-
torial point of view is shown to give also the normaliza-
tion constant of all lowering operators of all U(n) in a
conceptually very simple and economical way.

The content of Paper I is as follows. After a few pre-
liminaries in Sec. I we define the concept of a general-
ized hook. In Sec. II we show the existence of a
hook algorithm for maximal states, i.e., states whose
labels have their maximum values. We do not give a
proof of this algorithm since the proof already exists in
the works of Robinson.® Using the concept of a
generalized hook, in Sec. I1I we obtain an algorithmic
procedure to construct the explicit algebraic expres-
sions of those U(n) states whose U(n — 1) state labels
have their maximum values, i.e., states called semi-
maximal. The normalization constants of these semi-
maximal states are given in terms of a chain of
products of determinants, a decomposition rule, built
upon the underlying representation structure of the
permutation group of U(n). The results are shown to
admit of an interpretation in terms of the ordering
relations of the invariants of U(n) and U(n — 1), the
invariants that are tabulated in the triangular *“Gel’fand
pattern.” Finally, in Sec. IV we give the constructive
algebraic proof of the validity of the hook algorithm
for the semimaximal states using the lowering-
operator technique. At the same time we demonstrate
the existence of a combinatorial rationale upon which

¢ E. F. Beckenbach, Applied Combinatorial Mathematics (John
Wiley & Sons, Inc., New York, 1964).
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the hook algorithm and the lowering technique rests.

It may be useful here to summarize the contents
of the second part of this investigation. In Paper II
we show the manner in which the state vectors of
U(n) expressed in terms of boson operators (rather
than in abstract operator form) embody a generaliza-
tion of ordinary hypergeometric functions. We
demonstrate that these state vectors—i.e., ortho-
normal functions together with their normalization
constants—can be expressed in terms of a calculus
of tableaux; conversely, the explicit algebraic expres-
sions of these U(n) states may be written down directly
from the tableaux calculus. The general SU(4) state
vectors are derived as an example of the method for
SU(n); it is shown that these general states are built
upon products of the constituents of hypergeometric
functions of many variables, each such function being
a Radon transform of linear forms; the totality of the
expression of SU(4) states is then a “‘contracted” or
“folded” form over the constituents of such trans-
forms.

I. THE YOUNG FRAME AND
THE MAXIMAL STATE

We refer the reader to the review of the invariant
operator basis (the Gel'fand basis upon which the
boson-operator realization of state vectors is con-
structed below) contained in the article by Louck.?
The present article is an outgrowth of the concepts
presented previously! in an article in which it was
stated that the hook-calculus approach would be
discussed separately later.

The second reference, which we use extensively,
is Chap. II of the book by Robinson?; in particular,
we make frequent use of the results in Sec. 2.3,
Theorem 2.33, and Eq. (2.37). For brevity we do not
repeat nor summarize these results here.

To reveal the combinatorial content of state vectors
of the unitary groups U(n), we need to understand
precisely in what manner each irreducible representa-
tion® {4;, Ay, -+, 4,}7 of U(n) is associated with a
Young frame (or diagram) of boxes (or nodes) and
with the Gel’fand pattern of the invariants of U(n).
Figure 1 reproduces this association discussed
previously! in detail. We now restudy this associa-
tion.

5J. D. Louck, J. Math. Phys. 6, 1786 (1965).

¢ For a modern approach to representation theory, see C. W.
Curtis and 1. Reiner, Representation Theory of Finite Groups and
Associative Algebras (Interscience Publishers, Inc., John Wiley &
Sons, Inc., New York, 1962).

? We reserve the symbol [ ] for the representations of the
symmetric (permutation) group S) on k objects. We use the symbol
{ }for the representations of U(n) rather than { ) used in Robinson
for the general linear group and reserve the ( ) symbols for
operators on U(n) following the Dirac bra-ket notation.
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Min Man . Man
A AN
(m) = Min- Ma,0-1
max A NS
-\ N
N my
etc. Min
. efc. mzn’l
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T Mnn>1

FiG. 1. The maximal state vector for the irreducible representation
{A1, A2, *++, A} of Un) expressed in terms of the Gel'fand pattern
and the Young frame of the associated representation [4,, - - -, 4,]
of the permutation group Sy where 4; = m,,,. This Young frame is
to be filled with bosons, an a; boson in each box of the ith row, to
represent the state vector of Eq. 2.

Recall that the values m,; of the invariants® I}
satisfy the betweenness conditions®

My jq1 2 My 2> My jias ()
and therefore the Gel’fand pattern is a lattice in the
sense of partial ordering.® Thus the maximal state
indicated in Fig. 1 is unique. Furthermore, by Cartan’s
theorem, each irreducible representation is ‘“‘com-
posed” of elementary irreducible representations. It is
known?:1® that associated with each of the n element-
ary!'! irreducible representation of U(n) is a Young
frame of a single vertical column of boxes, k boxes in
all, for the kth representation. The Young frame of a
general irreducible representation is composed of
these vertical columns of boxes, with possible repeti-
tions, such that there are A, boxes in the ith row, the 4,
being called the representation labels satisfying
A; > 2, and being the values m,, of the invariants
I{™ at the U(n) “level” of the canonical subgroup
decomposition U(n) > Un — 1) = -+ - 2 U(1).
Now in the representations of the permutation
group Sy, where N is the total number 4, + 4, + - -~
+ A, = N of boxes of the Young frame, one considers
the symmetrizer and the antisymmetrizer of the group

8 H. Weyl, The Theory of Groups and Quantum Mechanics,
translated by H. P. Robertson (Methuen and Co., Ltd., London,
1931). The proof of the betweenness condition is given on page 391.

? G. Birkhoff and S. MacLane, A Survey of Modern Algebra
(The Macmillan Company, New York, 1953).

10 M. Hammermesh, Group Theory and Its Applications to
Physical Problems (Addison-Wesley Publ. Co., Inc., Reading, Mass.,
1962).

11 Also called **fundamental.”

223

algebra®%1%; through this arises the association of a
completely antisymmetric form?2

.o gk
aik,

Q... =D e(iyiy* i,)a; a%, -
with each column of k boxes in the Young frame. One
can now specify further that the objects @i be boson
operators having the commutation relations that
define them. It is therefore clear that associated with
the maximal state of an irreducible representation is
the vector

1 —_
I(m)>max = E (a12 e n)ln(alz- .. (n~-1));~n—1 IR

X (a12)112“113(‘1})/11_/lz ()

©))

The nonnegative integers m;, denote the number of
boxes in the ith row of the Young frame. The dia-
grammatic meaning of other m,;’s with k 3£ n is given
in the sequel. The ith row of boxes is to be filled with
avs.

The Mt factor in Eq. 2 is the normalization
constant that will be given below. A tableau is a dia-
gram of boxes filled with special symbols. A Young
tableau is a Young diagram filled in with integers,
which increase from left to right and top to bottom;
an extended Young diagram is one which allows
multiple occurrences—of one or more integers in each
row—in the row. Observe that each column contains
the boson operators that appear in theexpansion of the
associated antisymmetric form; we may symbolize this
by using the leading term (diagonal element) of the
form. [Writing the (numerical) subscripts only, then,
yields an extended Young tableau or what we also
call a Weyl basis tableau.] To evaluate the normaliza-
tion constants of U(n) state vectors below, we shall
need the concept of entanglement that follows,

Recall the indistinguishability of bosons of a given
type a; among themselves. Thus one cannot say, for
example, which boson of the first row is associated
with a given boson of the second row. However, by
fixing our attention on a given box, we can always
qualify it by the 7ype of boson it carries. Therefore, in
what follows, we may consider the box rather than the
boson which characterizes the box.

EntanglementX® In any vertically and/or horizon-
tally connected portion of a diagram, a box is said to
be entangled to all other boxes to its right in the same
row and below in the same column which carry any

12 The sum is over all permutations and e(iyiz - < - i,)is +1 or —1
according to whether the permutation is odd or even. We will use the
phrase ““antisymmetric form” even for a; = ;.

13 Even though in a somewhat different context, the concept of
disentanglement as a concept of re-ordering of operators appears in
a paper by R. P. Feynman, Phys. Rev. 84, 108 (1951).
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boson operator that appears in the antisymmetric
form!* to which the box belongs.

In this context of entanglement, we define a
generalization! of the Nakayama hook.?

Generalized hook. The hook of a box is the number
of connected boxes to its right in the same row and
vertically below it, plus 1 for itself, the type of boxes
considered being those which are entangled to the
given box.

In the following sections we show how these two
concepts are instrumental in the determination of
U(n) state vectors.

II. NORMALIZATION CONSTANT
FOR MAXIMAL STATES OF U(n)

We now obtain the normalization constant, the
M-, of maximal states given by Eq. 2. M1 will be
shown to be the “degree” f—the dimensionality of
the representation [4;, - - -, 4,] of the underlying Sy,
not's the dimensionality of the irreducible representa-
tions {4, - -+, 4,} of U(n). Equivalently, f'is the num-
ber of standard tableaux'® divided by N!, in other
words, the square of the normalization constant is the
probability P of obtaining standard tableaux out of all
N!possible tableaux, a standard tableau® being formed
when the boxes are filled with the integers 1,2, -+, N
which increase from left to right in any row and from
top to bottom in any column.

Upon establishing the one-to-one correspondence
of the maximal states of a given irreducible representa-
tion of U(n) with the representative Young tableau,
the results found in Robinson’s book® on the repre-
sentations of S can then be taken over verbatim for
these maximal states. One needs to obtain the repre-
sentation [4;, 4., - - * , 4,] which has a Young frame
constructed from the constituents of skew diagrams,
since probability calculations are very simply carried
out if the diagrams are skew. It has been shown by
Robinson that any representation [4,, -, 4,] = [4]
may be associated with a determinant

[A1, Aas o5 4] = [[4 — i+ j1l, 3)

and the degree f[41:%2."""- 2] of the representation [4]
is then given by

f[).x,"',i-n] ’ 1 ) ‘
N @G, —i+ gl

14 Of the elementary (fundamental) irreducible representation
denoted by the column of boxes.

15 I the sense given in Ref. 3; this number is also the number of
lattice permutations.
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which is the number of standard Young tableaux out
of all N! possible tableaux; we now note that this last
determinant is the 1/M that we set out to calculate,
as direct calculation of the norm using

(my| (m")y = om (5)

shows. (Compare Secs. 7-8 to 7-11 of Ref. 8.) The
square of the normalization constant is also® the
inverse of the total hook product H([A]) (cf. Ref. 3):

f“] 1

NT T HGD ©

where f and H now refer to those of the Young dia-
gram (frame).

III. SEMIMAXIMAL STATES OF U(n)

The states of U(n) whose U(n — 1) substates are
maximal are called semimaximal states. We first give
the hook method of evaluating the normalization
constant of these states, and then in Sec. IV we give the
justification of this procedure by evaluating the
normalizationconstant, using a directalgebraicmethod.
First consider the U(2) states. The most general U(2)
state is necessarily semimaximal. The associated
representative tableau and the betweenness lattice
(we call this the Gel’fand pattern) are shown in Fig, 2,

The operator part of the explicit algebraic expres-
sion of the state,

M—‘;‘(alz)mzz(al)mll—mzz(az)mm—mu [0}, (7)
which, for the example in Fig. 2, becomes
M-4(a,,)%(a1)*(a3)* 10), ®)

can be read from the tableau.

We note that the m,; value is required to be between
the m;, and my, values (or equal to either one) by the
betweenness condition, Eq. 1, depicted by the corre-
sponding Gel'fand pattern in Fig. 2. Thus the m,;
boundary in the diagram of boxes indicated in Fig. 2
is positioned between the my, and mj, boundaries
indicated by arrows and heavily drawn lines. It must
be noted that this tableau already represents a

Mz=9 —>
fe———m | = 5§
T"—A_""_B C——
UUPSILLY) 10 [9 18 z_'u_,4 13 lz ll
af |a a ‘g af g2 az| d2| 92
= 312 [
my b pa[ b
[ M2273
e—— A ~——>

FiG. 2. The general U, state vector expressed in terms of the
Gel’fand pattern and a generalization of the Young diagram,
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generalization of the familiar concept of a Young
tableau.

To calculate the normalization constant M—% of
this U(2) state we use the concept of entanglement
and generalized hooks as follows.

We dissect the tableau of Fig. 2 into three parts,
A, B, and C, such that each part carries one type of
antisymmetric form; the parts carry the antisym-
metric forms a,,, @;, and a,, respectively.

Observe that, in section A, each vertical pair of
boxes shows a type of entanglement in which not only
a, and b, are involved, but also g,, since this a, appears
in the expression a;, = (@b, — a,b;) where for
simplicity, we let a? = b,; thus, as the numbers in
Fig. 2 which are the hook values of the boxes indicate,
the hook of a box in the first row in section A extends
over all the ay’s as well, up to the rightmost m,
boundary. The hook value of each box in Fig. 2 is
given; a few of the hooks are also drawn. To take the
product of all such hooks from the first row in section
A, one uses the following computational aid.

Take the product of all hooks, (m, + 1)!, as if the
my, extended all the way to the m,;, boundary—thus
overestimating the hook contribution from the first
row of section A; divide the expression by (my, +
1 — my,)!, another hook product, thereby cancelling
out the overcounted (and nonexistent) hooks. This
completes the contribution® of the first row of section
A. The second row of section A contributes m,,!.

In section B, the a, bosons are not entangled with
any other type; therefore a hook of a box in this
section extends up to the m,; boundary. Likewise for
section C. The product of all these contributions gives
M, the square of the normalization constant, inverted:

(myy + D!

= Moo !
Qmm+1—mw! ”)

X (myy — my)! X (myy — myy)!,

©))
which, for the example, is

_ ( CRE)
O+1-3)

which is just the product H of all the hooks in the
tableau

-.31) X (5—3)! % (9= 5!,

H=(10-9-8)-(3-2-1)-(2:-1)-(4-3-2-1).
The M~ can be put in a form which will be shown

18 This procedure of taking factorials and eliminating overcounted
nonexistent hooks by a corresponding inverse factorial is an instance
of the powerful combinatorial technique. of inclusion—exclusion
[see, e.g., J. Riordan, An Introduction to Combinatorial Analysis
(John Wiley & Seons, Inc., New York, 1958)].
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to be more meaningful:
L__(m12+1—m22)!_ 1 . 1
M (myz + Dlmgy!  (myy — myg)! (myp — myy)!
1 1 1 (10)

~ H(4) H(B) HC)
Rearranging, using Eqs. (3), (4), and (6),

1 (M1 + 1 — my,)! (Mg — myy)!
M (myp + D! my! (myy — myy)! 1
1 . 1
(myy — myy)! (myy — myy)!
B f[m12-m22] . N[m12—7n22]! . f[mu—mzz] . f[mm~m11]
 Nemema! S ™ Noimeat! Nomgoming
1 1
_ My, ! (mys + 1)! ) ' 1
B 1 1 (M1 — myy)!
(Mg — 1! Mgy !
' 1 1
(my; — myy)! (myp — myy)! '

where superscript [- - *] to f and subscript [ -] to N
indicate the part of the diagram to which f and N
belong. This can then be put in symbolic “representa-
tion” form?® as in Fig. 3 and Eq. (11):

[mlz m22:| — [my,] [mye + 1]
my,

[mye — 1] [mge]

X [myp — mae] ™t X [myy — my,]

X [myy — my].

(11)

We emphasize that Eq. (11) is a direct outcome of
our generalization of the hook idea, in conjunction
with the present combinatorial use of Robinson’s
formula given by Eq. (6) above. The result may be
verified by direct computation of the normalization
constant.! To illustrate the workings of the generalized
hook, we now take up SU(3) and U(4) examples.
We first represent the hook method and give the

M2
My
r‘— A “ﬂ*——‘ B —«——2C
I | [ J Mz My
'l ¢ -
b m
2 "

—Mz2
e—A

F1G. 3. The connection, given by Eq. (11), of the determinantal form
of the U, state operator to the generalization of the Young diagram.
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algebraic justification of this procedure for all the
semimaximal states of all U(n), in the next section.
In accord with the betweenness condition, the
semimaximal states of SU(3) are denoted by the
representative tableau in Fig. 4. To find the contri-
butions to the total hook product, and therefore to
M1, the following points are to be noted. The hook
of a box in the first row of section A extends only up
to the my; = my, right boundary of section C, since
the antisymmetric form a,, to which the box belongs
does not contain a,. However, in section B, the hook
of a box in the first row extends all the way to the my,
boundary. Summarizing, we have the following.

Contributions to Total Hook Product
(a,)™*: (mys + 1)! myy! i
(myz — mgy + 1)!
ST (my3 — Mgy + 1)! (a3 — may)!
(myz — mys + D!
(@)™ 7™ (ag) ™= ™2 (Mg, — mgg)! (Mg — myy)!.

Upon rearrangement, these can be put into the concise

(al H
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symbolic form:

Mz My O
Myy My
Mye
— l [m;] (my, + 1 ’ X [y — Mgyl
[my — 1] [mas]
[mys — my,) [ms — mge + 1]

[mas — mg,)
X [y — maT™" X [myg — myp] X [myy — myg].
(12)

The full significance of the structure shown by this
result is not quite apparent, due to the circumstance
that SU(3) is still a bit too special.

However, the Gel’fand pattern of U(4) states has a
large enough number of m,,’s to reveal the generaliza-
tion of the decomposition rules embodied by Egs. (11)
and (12). Figure 5 shows the representative tableau
and the Gel'fand pattern of semimaximal U(4) states.
The decomposition rule is given by:

[meg — myy — 1]

Myy Mgy My My
Mig  Myy Mgy (sl [154] etc. [y — Myl ete. ~1
N N\ . [254] X (24 — my,]
myy, My, 34 ete. T
AN etc. [my] (34 a4
my
[z = ete. [mys — mg)  ete. |7
X [myy — myy] X ¢ '
etc. [y ~ ma) ete. o — gl |
[myy — mys) etc. (30 — 30 etc. _1
X [m2q — mgs] X .
etc. [my, — Mg cte. [m2yy — my,]
[mys — my,] etc. L o | T — magl etc.
X X l {13 — my) i X
etc. [myy — mg,] etc. [z — mys)
X |[myy — myg | X | [rtys — maal | x| [y — mys) [ (13)

Asin Egs. (11) and (12), this resultis also in symbolic
determinantal representation form from which the
normalization constant can be evaluated by inverting
the entries of the determinants and taking factorials in
accordance with Egs. (3) and (4).

i*——l\—*{*——- B —»fe——C ——+——D—~’1
—+ +

a My =M ‘__—:I;Ol o5 m,sq
b, '"224'{*’3 Mas ]

f—a—b—s—]

FiG. 4. The generalized diagram for the semimaximal states of

This seemingly complicated result actually embodies
a very simple law of construction as follows.

First notice that each determinant is fully specified
by enumerating the diagonal elements only. Hence
our algorithm for M need specify only diagonal
elements.

The algorithm begins by listing the two top rows of
the Gel’'fand pattern and the “path” as shown:

my, U(n) level

AR ERA S

Mog

Mgy Mgy my,

m, My Umn — 1) level
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M2z = M2z 3017 m24"‘
m33"‘L”‘34 ‘—"]

FiG. 5. The Gel’fand pattern and the generalized diagram for the
semimaximal U(4) states.

The m,; are “‘stations” on the path. One follows the
stations along the path. At each station two contri-
butions are obtained, one a determinant in the
numerator and the other a determinant in the denom-
inator. For the diagonal elements of the determinant
in the numerator, write the m,;,’s to the left of the
station (in the row of the station), including the
station and subtract from those m,;’s the (same) m,
that belongs to the previous station on the path. For
the second contribution at the station, namely, the
determinant in the denominator, instead of subtract-
ing the m,,, of the previous station, subtract the m,, of
the station itself.

Let us note that, instead of the above algorithm, one
might have given an equivalent procedure using the
algebraic expression of the generalized hook in terms
of the m,’s of the diagram of boxes for the semi-
maximal case just short of passing to the determinantal
form; this Jatter method is precisely what was done in
Ref. (1)in their Eq. 52 which we do not reproduce here.

To summarize, let us note that two equivalent
procedures have been given above for the determina-
tion of the normalization factor M, the measure of
the semimaximal U(n) states. Both use the concept of
generalized hooks. These two equivalent procedures
differ in that the determinantal form allows an
interpretation in terms of the ordering relations of the
betweenness lattice, and attains a logical simplicity
at the price of redundant factors. (Let us note in
passing that the various determinantal identities used
above, which are classical results of Young and
Robinson, frequently reappear in the literature under
less than classical guise.)

IV. COMBINATORIAL CONTENT OF THE
LOWERING OPERATOR

We now obtain the semimaximal states of all U(n) by
the familiar lowering-operator method of the theory
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of angular momentum; thereby we provide a con-
structive algebraic proof of the hook algorithm
presented in the previous sections, and reveal the
combinatorial structure of these U(n) states. Again we
obtain the U(4) case in a form which is valid for all
semimaximal states of U(n). The operator part is
shown to be given via Eq. (13), or its equivalent form
given by Eq. (52) of Ref. (1).

To obtain the state vectors by an algebraic lowering
operation, we need the following formulas involving
the operators E;:

[Ei;» a] = a,0(J, D,
[Eii9 alm] = aimé(j’ l) + alia(j’ m)a (14)

(Eij» Qi) = 01005 D) + a,0(f, m) + a;,,0(7, k),

(Ei)™(ay)" = i (rkl)(oc_i'—k)—' (ajl)(“_k)(a”)k(Eﬁ)("'7‘),
(15)

We apply Eqs. (14) and (15) to U(2), U(3), and U(4)

in that order. Furthermore, we obtain these normaliza-

tion constants of states in two different ways which

demonstrates the usefulness of the combinatorial

approach, both in economy of labor and in elucidating

the substructure upon which these states are built.
Consider the U(2) maximal state

1

— (@)™ (@)™ |0), (16)
with the normalization constant
- 1
; — (mlz‘ Mgy + 1)! (17)
M:ax (myp + 1) myy! (myy — my,)!

Operating with (Ey)™2 ™1 on Eq. (16), using Eqs.
(14) and (15), letting n = myy, — My, & = My, — My,
B = my, (cf. Fig. 6) we obtain

(Ex)" —1— (@l (@) 0
M

max

= Mi EOL—.—O-}-LI;)_' (a12)p(a1)a—ﬂ(ag)n 10y, (18)

m||*’1 mlzj
Moz ]‘ﬁ_n*__,‘
k— B — a———-'l

FiG. 6. The generalized diagram for U(2) states redrawn in a
simpler form.
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At this point there are two alternative methods to
find the correct normalization factor for the operators
in the semimaximal states of U(2) expressed by the
right-hand side of Eq. (18). First, one may use the
known normalization constant N~ (e.g., Ref. 17) of
the lowering operator (E,;)™ defined by

o) o

this constant being

NEy)"

Nt = l: (my, — mgp)! :r (20)
(M1y — myy)! (myy — Myy)!
Combining factors, we obtain (denoting *‘semi-
maximal” by s.m.):
!
Lo
Ms.m. Mmax (O‘ - n)'
—_ { (myp — mgs + 1)! }%
(myy + Dlmgy! (myy — myp)! (Myp — myy)
€2y

which is precisely the expression given by Eq. (9)
obtained by the method of generalized hooks.
Second, and more importantly, we observe the com-
binatorial aspect of this lowering operation, the
aspect embodied by the incomplete binomial coefficient

!
(@ —n)!
Since the completed binomial coefficient () is
necessarily appropriately “normalized” in the com-
binatorial sense, combining this with the probability
coefficient

Pre = ——— = —— 22)
Uz max Hmax
Uz Us

which, we noted,® also has a definite combinatorial
meaning, we obtain the probability

(23)

P =i (0) =
U Mmax n Ms.m.
Usy Uz
which is the square of the normalization constant
Eq. (21) of the semimaximal U(2) states. This second
method obviates the use of the normalization constant
of the lowering operator, and in fact at the same time
determines the normalization constant of the lowering
operator. We show that this situation is quite general
and applies to all semimaximal U(n) states, and gives

17 J, G. Nagel and M. Moshinsky, J. Math. Phys. 6, 682 (1965).
See also references quoted in Ref. 5 above.
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the normalization constant of all lowering operators
of all U(n).

One form! of the unnormalized lowering operators
of U(n) is given'? by

Uy: Ly = E,,
Us: Lé = 813E5 + Epk,y,,
Lg = Ej,,

U,y Ly = 833E 3By + 833EEs,
+ 815E43Eg + EpEpEs,
L} = 8Ey + EgEs,,
L:=E,,

(24)

where

& =Ey;— E;+(— DI,

etc., which can be easily interpreted in terms of the
Gel’fand pattern, the subscript of L referring to the
Uth level and the superscript the particular “link”
of the my, to m, ;._,, the L} operator lowering the m, ;
values simultaneously for all j =k — 1,k — 2, - by
one:

oMy . Mgy o Mgy

NN EN
N \
N

nyy

Myy

Mgy

The U(3) Semimaximal States

Applying the operator Lj on the maximal U(3)
state and using Eqgs. (14) and (15), one finds

Lrlx 1 (‘1123)4(“12)5(0 Nl

max

= _—‘12_— (a123)1L§(a12)p(al)y 10)

max

= Mi (a1 y(y + B + D(a12(a))"a; |0),

max
with
[Lé, ayp3] = 0 [L:lss ag] = 0.

Whence (see Fig. 7):

ma sy B Y ! y+p+1!
(L) (a2) (al) [0) = =)+ B+ 1—n)!
X (a12)’(a))Y(ay)" [0). (26)

(25)
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' s I
Ma2 —'L :‘23——{ i<—— nl"]
e |

B 1< Y g

F1G. 7. The generalized diagram for U(3) states redrawn in a simpler
form.

m
_3_ij

3
e

2
a

Next we find, in a similar way, with n, = mgy — m,,:

(Eea)™(LY)" —— (@1 (ar)' 0)
Mmax
_ 1 B! p! v+ 6+ 1!
ML B! (= n) (4 B+ 1 —ny)!
X (a39)""(a35)"(ay) " (ax)" |0). (27)

In order to complete the factorials of Eq. (26), one
needs to observe that, since the my, boundary is
restricted to remain between the my; and m,,; bound-
aries, the factor y!/(y — ny)! is indicative of the
repartitioning of the section y and therefore the
associated combinatorial factor is merely (3),
involving hooks on one row of boxes. Similarly the
hooks of the second row of the 8 section need to be
readjusted when m,, is moved from m,, = m,; into
its general position and again the associated combina-
torial factor is a binomial coefficient, (£). On the
other hand, we observe that the boxes of the first row
in section g — n, involve hooks over two rows of
boxes and the effect of moving the m,, boundary
from its m,, = my; position involves a readjustment
of these hooks. To complete the term

(y+ 8+ 1
(y+8+1—ny!

(where the integer 1 indicates that the hooks are over
two rows) one needs the hypergeometric distribution

coefficient
6 =)
hoy(hs n) = \K/An = k] (28)
()
n

which has a clearly defined combinatorial meaning®®;
it is the probability that given N objects, « of which
say are black and the rest N — « white, when # of the

N objects are drawn out at random without replacc-
ment, k of the n objects will be black and n — &

18 We discuss this in detail in Paper II. The knowledge that this
incomplete part belongs to an hypergeometric probability distri-
bution comes from the fact that SU(3) general states embody an
o F; hypergeometric function that is derived in Paper II by this same
lowering procedure.
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white. For the present case we need the k = 0 term of

h/i_—lnz;ﬂ+y+1(k ) (29)
which is
+B+1 _(y+1+n2-—n1)!. 30)
y+p8+1—ny! (y + 1+ ny)!
The missing part is
y+1+n—ny! — (myp — my, + 1! , (31

(y + 1+ ny)! (myz — mgy + 1)

the inverse of h coming into the Eq. (26) because of
cancellation of hooks overcounted prior to the
application of the lowering operator. Observe also
that the binomial coefficients themselves are the
inverse of the associated probability coefficients.
Next we give a direct verification of this combinatorial
method for U(3):

Pmax -

1 . (M3 — Mgy + 2)! (myy — Mgy + 1)!
Mmax (m13 + 2)' (m23 + 1)' m33!
(myz — my + D!

(My3 — Moy + D! (Mg — myy)! (M5 — myy)! ’

X

Operator (Mg — mgg)t
produced” (m,, — my,)! (ma3 — myy)!

missing
parts factor

(myz — my)!
(Mg — myg)! (my, - my,)!

missing
factor

(myg — may + DI (myp — myy + 1)}

3
(M — mgs + DI (Mg — myy + DI
missing factor

X

1 (myg — mgy + 2)! (myg — mgg + 1)!
Mw (i + 2! (ma + D! mgy!
(myp — myy + 1)!
(myy — mgy + 1! (Mg — my,)!
(my3 — mys + 1!
(my3 — myy + 1! (mys — my,)!
1 1

(myp — my)!  (myy ~ myy)!

X

X

Thus

Pom. = Pmax(ﬁ Y7 ) vt . G229

ne/ \My

This is a significant result; observe that the contri-
bution from the U(n — 1) level, namely,

WIAR



230

are all inverses of probabilities so that

Pmax

Ps.m. =

(32b)
Pdue to passage to semimax.
[Moreover, we shall see in Paper II that in SU(3) the
contributions for semi-semimaximal states—namely at
the U(n — 2) level—to the probability 4 comes now on
the numerator. Thus we see that, in passing to more

M. CIFTAN AND L. C. BIEDENHARN

and more general states of U(n), the overcounted
probability contributions are corrected at each stage.
This is clearly an indication of a type of the inclusion—
exclusion principle!® of combinatorial analysis. We
hope to discuss the connection elsewhere.]

To verify this result, we determine the normalization
constants of the lowering operators, namely, that the
product of the three contributions

L [ (1 — g5 + 2)! (Mag — mgg + ! (s — myg + 1)! T 33)
M?nax (mys + 2)! Mgy + D! mgy! (Myy — Mgy + 1)1 (Myy — myy)! (myy — myy)!
— ! — ! — !
operator hook changes = (Mgg — mgg)! (Mg — Myg)! (My3 — myg + 1)! i (34)
(Mg — mgx)l (M — myg)! (Myy — Mgy + 1!
N g L)
— [(mw — Moy + D! Mgy — Myy)! (Myp — Mgy + 1! (mgy — mgy)! ir
(mMy3 — myp)! (M3 — Mgy + 1)! (Mg — myy)! (myz — mag)! (Mg — Mgy + 1) (Myy — mygy)!
(35
which must, and do, give
1 — l: (my3 — Mgy + 2)! (Myy — Mgy + D! (Myy — Mgy + 1! (My3 — my; + 1)!
Mg.m. (Mg + 2)! (Mg + 1) myy! (Mg — Mgy + 1)1 (mgy — Mag)! (my3 — Mgy + 1) (Mg — my,)!
Us
1 1 3
X X . (36)
(myy — my)!  (myz — my,)!

We have thus shown that, for U(3) semimaximal
states, the probability approach is equivalent to the
use of normalized lowering operators.

Let us also demonstrate that the combinatorial
approach determines the normalization constant of
the (L™ and (L1)™ operator of U(3).. We have the
general rule

Piowered = Pmax X operator produced parts
state

X missing factors, (37a)

=1 x (operator produced parts)?
Mmax
X (NZym%  (37b)
whence )
N’(E,‘)" _ l: missing factors :] . (38)
operator produced parts
Thus, for (Ey,)" we have
R
(ma3 — myo)!
N = [ 22—, (39)

(Mg — msy)!
(myy — Myy)!

which agrees with Eq. (35) when ny = myy — my, = 0.

Also

3
1 (Mg — mys + D!

(myz — ma)! (my3 — mys + D!
(my3 — mys)! . (myy — my3 + 1)!
(myy — myy)! (Mg — my + 1!

Nz hm = » (40

which again agrees with Eq. (35) when n, = my; —
my, = 0.
The Semimaximal states of U(4) and U(n)

We now derive the semimaximal U(4) states in a
manner which demonstrates the validity of the results
for the semimaximal states of all U(n).

Starting with the maximal U(4) state

—i— (A3230) ™4 (@120) ™4 ™44 (A1) ™M M (@) ™M™ |0),

max
(41)
we use the lowering operators
( L‘Z)msr'mas( Li)mu—mza(Li) mya—myia (42)

on this maximal state; letting for convenience (see
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I a4 =MET, hlsmﬂ
> q25m23‘ﬂ-lh25m24—a-1 e, _,‘
3 Q3=M33 l h35m344| P—nzAﬁ |

ha=mas 4 i"‘—%““"‘ ] !
v A A

FiG. 8. The generalized diagram for U(4) states giving the hook-
chain rule of Eq. 43.

Fig. 8):
Ny =My — Myg, % =My, h=my, g =mg,,
Hy = Myy — My, O = My — My,

hy = myy, gz = My,
Ny = Mgy — Mgy, = Mgy — My,
hy = mg,, g3 = My3,

Y E My — My,

hy = my,.
We obtain
(LY L)™(LY™ %1 (@1230)"(123)(a12)"(ay)" 0)
max Uy
___{ V! @+8+1D! @+BtatD)! }
=)+ B+1—n)!I+B+a+2—n)!
x{ B! B+ a+ 1! } { a! }
B=n)!(B+a+1—ny)! (x — ny)!
%1 X (@1930)"(@12)" " @19)™

max Uy
X (a12)’"(ar0)™(a))’ " (a)™ |0},

in the following manner.

First observe the pattern of the expressions for
U@2), U@3), U@4) when the LI, L}, L} operators
operate on the operators of the maximal U(2), U(3),
U(4) states, respectively:

(43)

Ly(a,)" 10) = y(a))"a, |0)

Ly(a12/’(a))" 10) = y(y + B + 1)a1n)(a,)" a5 10)

Li(a155)%(a10)’ (@)’ = y(y + B+ Dy + B + « + 2)
X (@123)*(a12)’(ar) 1a, |0), (44)

etc. (to be called the hook chain rule), with

[L3, a1) = 0;
[L3, a155] = 0;
[Li, a12a1] = O;

[Lé’ a2] = 0’
[L:li9 a;] = 0,
[Li9 a4] = 0'

(45)
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Whence,

(L;)”(am)ﬂ(al)y [0

_ }/! V'3 =7 n
= (y =y (1112) (ay) (az) |0)

(Lé) "(a195)(a 12)ﬁ(a D10

y! y+ 8+
y=m!y+p+1—=n)

X (a399)(a12)*(ay)""(ag)" 0)

1
(Ll " (A1230)"(a129)(a )ﬁ( V' 10
a) Mﬁmx . Q1934 2 12) (4 /
y! +8+ D! P+p+a+2)!

T B+ L)y + Bt at2—n)!

X —gl— (‘11234)%(“123)“(‘112)3(“ D7 ag)™ |0).
Mma.x U,y
(46)

Next observe that [LZ, a;] = 0 as well as {L%, a,] and,
therefore, L2 does not “see” the a, operator nor the a,
operator created by the previous lowering operator Lj.
The result is reflected in the associated tableau. Again
by the hook chain rules, Eq. (44),

Li(a155)(a10)(a,) a5 |0)
= (a125)%(a1)" " asL¥(a,2)’ 10),
Li(@n) = B(arn)'ay 10),
Li(@120)(a100)(a10) (@) a4 10)
= (A1230)™(a1)" "' asLi(2125)"(a1s)’ 10),
Li(a159)"(a15)" 10)
= (B + o + 1)(a120)(a15)" a1 [0).  (47)

Operating (L2)"2 on the right-hand side of Eq. (46)
gives the second collection of factors in curly brackets
on the right-hand side of Eq. (43), and the respective
operator changes effected by the power of n,. Again
the L2 operator in Eq. (43) does not “see” the a5,
a, operators that the preceeding L}, L} operators
“see,” nor does it see the operators a4, a} that the
L%, L} operators have created; the hook chain rule
again applies, and finally one obtains Eq. (43); it is
clear that this process gives the semimaximal states
of all U(n). The operator part is simply read off the
tableau given above; we next show that the coeflicients
are precisely the required hook changes from the
maximal states to give the semimaximal branching
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law; this is demonstrated as follows:
1 (—ha+3)!(hy— by +2)! (s — hy + 1)!
(hy + 3) ! (hy + 2)1(hy + D! hy!
N (hy — hs + 2)! (hy — hy + 1!
(hy — hy + 2)V (hy — hy + 1)1 (hg — hy)!
« (hy — hy + 1) y 1 ’
(hy — hy + 1)1 (hy — h3)!  (hy — hy)!
(48)
operator _ (h; — hy)! (hy — hs + D!(hy — by + 2)!

produced (g, — hy)! (g1 — hs + D! (2 — hy + 2)!
parts

Mmax Uy

o ha = )l (hy = g + D! (hg — hy)!
(42 — h9)! (@ — hy + D! (gs — B!’
(49)
— (g1 —g: + D!(gy — g5 + 2)!
(hy — @)! (hy — g2 + D! (hy — g3 + 2)!
y 1 (gz — gs + 1! 1 ‘
(hy — g5)! (hy — g5 + 1! (hy — g3)!
(50

missing 1
factors

Whence
1 (= hi+ 3! (hy— by + 2)! (hg — by + 1)!
M. B (hy + ) (hy + 2! (hy + D! hy!
% (91— g5+ 2! (g: — g5 + !
(91— ha + D!(g2 — by + D! (g5 — hy)!
(hy — hg + 2)! (hy — hy + 1)!
(hy — g3 + D! (hy — g5 + D! (hy — q5)!

M. CIFTAN AND L. C. BIEDENHARN

% (91 — g2 + D!

(g, — hs + D!(g2 — h3)!
% (hy — hy + D)!

(hy — g2 + D! (hy — g5)!

% 1 1
(g1 — hy)! (hy — q1)!

As before in Eq. (32a), we complete the combinatorial
coefficients in Eq. (43) by supplying the missing terms;
again the same result can be obtained if the method of
using the appropriate normalization constants of the
lowering operators are used, but this latter method is
unnecessary and less illuminating.

In fact, the completion of the missing factors,
corresponding to any of the given lowering operators,
gives the normalization constant of that operator.
By the process of passing from any U, maximal to
U, maximal states, one obtains the normalization
constant of any U, lowering operator immediately,
without intermediary calculations. Equation (47) is
the same as the expression obtained by the hook
algorithm; the procedure is valid, muratis mutandis, for
all U(n) and thus constitutes a general proof of the
algorithm.

We conclude that we have proven the validity of
the hook algorithm which gives the boson-operator
realization of semimaximal states. Furthermore, the
details of the above constructive algebraic proof of
the algorithm has demonstrated that the hook is a use-
ful combinatorial entity and elucidates the structure
of these U(n) states.

(1)
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